4-2 面向复用的软件构造技术

1、设计可复用的类

1.1 行为子类型和LSP

子类型:

​相比于父类型,要有相同或更强的ADT(前置条件变弱后置条件变强更强的不变量);

​在java中表现为:子类型可以增加方法;子类型中重写的方法必须返回相同或子类型的返回值(协变);子类型中重写的方法必须接受相同类型的参数(逆变);子类型重写的方法不能抛出额外异常。

例子:
​假如一个长方形类、一个正方形类,然后正方形类继承长方形类。长方形有一个方法setWidth:改变某条边的长度。这时正方形类就无法继承这个方法,因为会破坏规约。正方形类和长方形类不应该是继承,而应该是委托的关系。
在这里插入图片描述

LSP:

在这里插入图片描述

协变:

​ 子类型中重写的方法的返回值是父类中方法返回值的子类,子类的异常也应该是父类异常的子类。这种同向的变化就叫协变。

​ 协变还有一层含义就是子类型的实例可以被赋给父类型
在这里插入图片描述在这里插入图片描述
逆变:

​ 子类型中重写的方法的参数是父类中方法参数的父类。这种逆向的变化就叫逆变。java中不支持逆变,当作重载处理(Overload)。

​ 数组是协变的。泛型不协变,泛型只存在于编译阶段,之后会被擦除,例如:List和List是相同的,类型擦除后都是List。

泛型擦除:
在这里插入图片描述
​ 对于泛型使用类型查询:
在这里插入图片描述
​ instance of一个泛型类会编译不通过,getclass可运行,但运行时类型被擦除,故Pair<String>和Pair<Employee>是相等的。

​泛型不存在协变,故不可以将一个泛型类赋值给另一个泛型类,这里的List<a>与List<b>毫无关系,故不可以这样赋值:
在这里插入图片描述
​要写泛型方法可使用通配符:
在这里插入图片描述
​ 下限通配符、上限通配符, 有了通配符,泛型就有子类的概念了:
在这里插入图片描述
​ PECS:producer要用super,consumer要用extend。
在这里插入图片描述

1.2、委托、组合

​ 如果一个类继承另一个类,很可能继承下来很多不可用的方法,需要重写这些方法为空。好的做法:委托。可以避免大量不需要的方法。

​ ADT的比较的两种实现:

​ 1、实现一个比较器,然后将比较任务委托给这个比较器Comparator;

​ 注意comparator中compare函数的逻辑:返回1的时候将两个对象互换,所以下面这个是升序:
在这里插入图片描述
​ 2、这个ADT实现Comparable接口,在ADT中实现compareTo函数,这样就把比较封装在了ADT内部,而不用额外实现一个比较器类,但这不是委托。

显式委托:通过传入对象,然后调用这个对象的方法,比如说比较器:
在这里插入图片描述
隐式委托:类中声明一个成员变量,然后类的方法调用这个成员变量的方法:
在这里插入图片描述
B隐式委托A,就是指B中声明一个A类型的成员变量a,然后B中方法的实现都依托于这个a。例如lab2中:
在这里插入图片描述
组合:问题在于对象层面而不在于类的层面,一个类的不同对象可能有不同的行为。

​ 比如说开发一个动物类ADT,行为有叫和飞,有十余种飞和叫的方式,好的实现:接口之间通过extends实现拓展,比如说鸭子会叫又会飞,就可以extends Flyable、Quackable接口,其中Flyable、Quackable接口又各有十余种实现:
在这里插入图片描述
​ 然后鸭子类对fly、quack的实现可以委托给Flyable和Quackable两个接口:
在这里插入图片描述
​ 客户端给一个对象分配它的行为方式,这样同样是duck类,就可以有不同的行为方式:
在这里插入图片描述
​ 组合的总体形式:
在这里插入图片描述
委托的种类:

​ (1)依赖Dependency

​ 这是临时性的委托,通过方法传参建立局部的联系,被委托的对象也不是这个类的成员变量:
在这里插入图片描述
​ (2)association

​ 这是永久性的委托,一个类将要委托的对象作为自己的成员变量,其有两种形态,分别是composition和aggregation。

​ (3.1)组合composition

​ 这是更强的association,但难以变化,就是初始化的时候对成员变量进行赋值,是死的,没办法变化。
在这里插入图片描述
​ (3.2)聚合aggregation

​ 这是更弱的association,可以动态变化,即有专门的方法对其成员变量进行赋值。
在这里插入图片描述

2、系统层面的可复用——库和框架

库的复用:我们写的代码调用库;

框架的复用:我们写的代码填充框架,框架调用我们写的代码。

白盒框架:

​ 框架中有一些未完成的方法、空白,子类通过继承和重写方法完成对框架的填充、子类有主方法但调用是由框架调用。例如模板模式就是白盒框架。客户端写main。一次只能进行一次扩展,开发者框架。

​ 一个抽象类白盒框架:
在这里插入图片描述
黑盒框架:

​ 看不到代码,框架只提供一系列接口,通过plugin实现接口来实现框架的填充,相当于是通过委托来实现,由框架调用。框架写main。一次可进行多次扩展,用户框架。

​ 这个黑盒框架有一个成员变量作为接口,外部plugin实现接口:
在这里插入图片描述
两个框架的工作流程:
在这里插入图片描述
设计框架的指导原则:

​1、确定该框架的领域;

​2、找出通用的部分,在框架中实现;

​3、可变的部分留给外部去实现;

​4、接口——抽象类——具体类:由抽象到具体,通用的向上放。

使用库和框架的投资回报曲线:
在这里插入图片描述
Collections介绍:
主要就是有四个接口:list、set、map、queue,实战都接触了,不记了。
迭代器的删除是安全的,其他对集合的删除会造成索引的混乱。
迭代器在4-3有详细介绍。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值