hdoj 2829 Lawrence 四边形不等式优化dp

dp[i][j]表示前i个,炸j条路,并且最后一个炸在i的后面时,一到i这一段的最小价值。

dp[i][j]=min(dp[i][k]+w[k+1][i]) w[i][j]表示i到j这一段的价值。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1e3+9;
int a[maxn];
long long dp[maxn][maxn],w[maxn][maxn],sum[maxn];
int s[maxn][maxn];
int main()
{
    int n,m;
    while(scanf("%d %d",&n,&m),n)
    {
        memset(dp,50,sizeof(dp));
        memset(w,0,sizeof(w));
        sum[0]=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            sum[i]=a[i]+sum[i-1];
        }
        for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
        w[i][j]=w[i][j-1]+a[j]*(sum[j-1]-sum[i-1]);

        dp[0][0]=0;
        s[0][1]=0;

        for(int i=1;i<=n;i++)
        {
            s[i][min(m,i)+1]=i-1;
            for(int j=min(m,i);j>=1;j--)
            for(int k=s[i-1][j];k<=s[i][j+1];k++)
            if(dp[i][j]>dp[k][j-1]+w[k+1][i])
            {
                dp[i][j]=dp[k][j-1]+w[k+1][i];
                s[i][j]=k;
            }
        }
        long long ans=dp[m][m]+w[m+1][n];
        for(int i=m;i<=n;i++)
        ans=min(ans,dp[i][m]+w[i+1][n]);
        printf("%lld\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值