可以得出一个结论,得到最优距离的那个点a,要么是目标点,要么就是距离某个点距离为d的点。
第二种情况有两种情形:1:仅仅距离一个点b的距离为d,那么a必定位于目标点到b的连线上。
2:至少距离两个点的距离为d。
那么就可以分别枚举这三种情况了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn=1e3+9;
const double inf=1e11,epx=0.00001;
int n;
double rx,ry,d;
double x[maxn],y[maxn];
double cal(double x1,double y1,double x2,double y2)
{
double a=(x1-x2)*(x1-x2);
double b=(y1-y2)*(y1-y2);
return sqrt(a+b);
}
bool chk(double xx,double yy)
{
for(int i=1;i<=n;i++)
if(cal(xx,yy,x[i],y[i])>d+epx) return false;
return true;
}
int main()
{
// freopen("in.txt","r",stdin);
while(scanf("%lf %lf",&rx,&ry)!=EOF)
{
scanf("%lf",&d);
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf %lf",&x[i],&y[i]);
bool flag=false;
double ans=inf;
if(chk(rx,ry))
{
ans=0;
flag=true;
}
for(int i=1;i<=n;i++)
{
double tmp=cal(x[i],y[i],rx,ry);
double xx=x[i]+(rx-x[i])*(d/tmp);
double yy=y[i]+(ry-y[i])*(d/tmp);
if(ans>cal(xx,yy,rx,ry))
if(chk(xx,yy))
{
ans=cal(xx,yy,rx,ry);
flag=true;
}
}
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
if(cal(x[i],y[i],x[j],y[j])>2*d+epx) continue;
if(fabs(x[i]-x[j])<epx&&fabs(y[i]-y[j])<epx) continue;
double x1=x[j]-x[i];
double y1=y[j]-y[i];
double xx=x[i]+x1/2,yy=y[i]+y1/2;
double tmp=cal(xx,yy,x[i],y[i]);
double txt=sqrt(d*d-tmp*tmp);
double ex,ey;
if(fabs(x1-0)>epx) ey=1,ex=-y1/x1;
else ex=1,ey=-x1/y1;
double tt=sqrt(ex*ex+ey*ey);
xx+=txt*ex/tt;
yy+=txt*ey/tt;
if(cal(xx,yy,rx,ry)<ans)
if(chk(xx,yy))
{
ans=cal(xx,yy,rx,ry);
flag=true;
}
xx-=txt*ex*2/tt;
yy-=txt*ey*2/tt;
if(cal(xx,yy,rx,ry)<ans)
if(chk(xx,yy))
{
ans=cal(xx,yy,rx,ry);
flag=true;
}
}
if(!flag) printf("X\n");
else printf("%.2lf\n",ans);
}
return 0;
}