常见数据结构

一、常见数据结构如下:

二、具体介绍

1、数组:数组创建的时候会向内存申请一块连续的固定大小的内存空间,因此数组创建后其大小就不可变,如果使用过程中数据大小不够需要扩容这个时候就会将老数组的数据复制到新数组当中变通实现扩容。数组在插入数据时,待插入的数据以及它后面的数据都需要向后搬移,同理删除都需要向前搬移,因此插入删除效率低。但是因其内存连续想访问哪个元素直接从数组的首地址向后偏移就能找到了,这也是所谓的通过下标查找。因此查找效率高,时间复杂度为O(1)。优点:查找快,时间复杂度为O(1),缺点插入删除慢,内存空间要求高,必须有连续内存,大小固定不能动态扩容。

2、链表:链表在内存中空间是不连续的,链表中的元素都有两个属性,一个是value值一个是指针,这个指针记录了下一个元素的内存地址。因为其空间是散列的因此也就不具备随机访问,查找数据的时候就是从第一个数据开始找依次遍历直到找到对应的元素其复杂度为O(N),其空间是零散的不需要提前指定大小,动态扩展的,空间利用率高。如果是任意位置插入数据其效率较高,为O(1),其特点是增删快,但是查找慢。内存利用率高。关于链表与数组的比较还有下图

3、栈:栈是一种特殊的线性表,仅能在线性表的一端操作,栈顶允许操作,栈底不允许操作。根据存储空间的分配方式可以分为使用原生数组实现的静态栈和使用动态分配的堆空间实现的动态栈。特点是先进后出。

4、队列:队列是一种特殊的线性表,仅能在两端进行操作,队头可以进行区数据操作,队尾进行插入数据操作。根据存储空间的分配方式可以分为使用原生数组实现的静态队列和使用动态分配的堆空间实现的动态队列。队列的特性是先进先出。关于栈跟队列可以相互实现。队列跟栈可以相互实现:两个栈可以实现队列,相当于存一遍从上往下An,An-1,……,A1然后再存一遍,两遍顺序又导正了,然后正常拿即可,比较容易理解,那么反过来两个队列实现一个栈如何实现呢?如下图

5、树结构

A、二叉树:二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。

B、满二叉树:在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。满二叉树的特点有:
1)叶子只能出现在最下一层。出现在其它层就不可能达成平衡。
2)非叶子结点的度一定是2。
3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。

C、完全二叉树:若设二叉树的深度为h,除第 h 层外,其它各层 (1~(h-1)层) 的结点数都达到最大个数,第h层所有的结点都连续集中在最左边,这就是完全二叉树。对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。完全二叉树的特点:1)叶子结点只能出现在最下层和次下层。
2)最下层的叶子结点集中在树的左部。
3)倒数第二层若存在叶子结点,一定在右部连续位置。
4)如果结点度为1,则该结点只有左孩子,即没有右子树。
5)同样结点数目的二叉树,完全二叉树深度最小。
:满二叉树一定是完全二叉树,但反过来不一定成立。

D、二叉树的存储:二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。

当二叉树为完全二叉树时,结点数刚好填满数组。那么当二叉树不为完全二叉树时,采用顺序存储形式如何呢?

尤其当左/右斜树极端情况,采用顺序存储的方式是十分浪费空间的。因此,顺序存储一般适用于完全二叉树。

二叉链表存储,既然顺序存储不能满足二叉树的存储需求,那么考虑采用链式存储。由二叉树定义可知,二叉树的每个结点最多有两个孩子。因此,可以将结点数据结构定义为一个数据和两个指针域。表示方式如图3.11所示:

E、二叉树的遍历是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。前序遍历、中序遍历、后序遍历、层序遍历四种遍历方式

前序遍历通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。

F、二叉查找树定义:又称为是二叉排序树(Binary Sort Tree)或二叉搜索树。二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:

  1) 若左子树不空,则左子树上所有结点的值均小于它的根结点的值;

  2) 若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;

  3) 左、右子树也分别为二叉排序树;

  4) 没有键值相等的节点。

  二叉查找树的性质:对二叉查找树进行中序遍历,即可得到有序的数列。

  二叉查找树的时间复杂度:它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。原因在于插入和删除元素的时候,树没有保持平衡(比如,我们查找上图(b)中的“93”,我们需要进行n次查找操作)。我们追求的是在最坏的情况下仍然有较好的时间复杂度,这就是平衡查找树设计的初衷。

二叉查找树的高度决定了二叉查找树的查找效率。

  二叉查找树的插入过程如下:

  1) 若当前的二叉查找树为空,则插入的元素为根节点;

  2) 若插入的元素值小于根节点值,则将元素插入到左子树中;

  3) 若插入的元素值不小于根节点值,则将元素插入到右子树中。

  二叉查找树的删除,分三种情况进行处理:

  1) p为叶子节点,直接删除该节点,再修改其父节点的指针(注意分是根节点和不是根节点),如图a;

  2) p为单支节点(即只有左子树或右子树)。让p的子树与p的父亲节点相连,删除p即可(注意分是根节点和不是根节点),如图b;

  3) p的左子树和右子树均不空。找到p的后继y,因为y一定没有左子树,所以可以删除y,并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替p的值;或者方法二是找到p的前驱x,x一定没有右子树,所以可以删除x,并让x的父亲节点成为y的左子树的父亲节点。如图c。

G、平衡二叉树

  我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定。但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,提高它的操作的时间复杂度。于是就有了我们下边介绍的平衡二叉树。

  平衡二叉树定义:平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用算法有红黑树、AVL树等。在平衡二叉搜索树中,我们可以看到,其高度一般都良好地维持在O(log2n),大大降低了操作的时间复杂度。平衡二叉树是基于二分法的策略提高数据的查找速度的二叉树的数据结构;平衡二叉树是采用二分法思维把数据按规则组装成一个树形结构的数据,用这个树形结构的数据减少无关数据的检索,大大的提升了数据检索的速度;平衡二叉树的数据结构组装过程有以下规则:

总结平衡二叉树特点:

(1)非叶子节点最多拥有两个子节点;

(2)非叶子节值大于左边子节点、小于右边子节点;

(3)树的左右两边的层级数相差不会大于1;

(4)没有值相等重复的节点;

  最小二叉平衡树的节点的公式如下:

  F(n)=F(n-1)+F(n-2)+1

  这个类似于一个递归的数列,可以参考Fibonacci数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。

    平衡查找树之AVL树

AVL树定义:AVL树是最先发明的自平衡二叉查找树。AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它。在AVL中任何节点的两个儿子子树的高度最大差别为1,所以它也被称为高度平衡树,n个结点的AVL树最大深度约1.44log2n。查找、插入和删除在平均和最坏情况下都是O(logn)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(logN)。但是频繁旋转会使插入和删除牺牲掉O(logN)左右的时间,不过相对二叉查找树来说,时间上稳定了很多。

  AVL树的自平衡操作——旋转:

  AVL树最关键的也是最难的一步操作就是旋转。旋转主要是为了实现AVL树在实施了插入和删除操作以后,树重新回到平衡的方法。下面我们重点研究一下AVL树的旋转。

  对于一个平衡的节点,由于任意节点最多有两个儿子,因此高度不平衡时,此节点的两颗子树的高度差2.容易看出,这种不平衡出现在下面四种情况:

1) 6节点的左子树3节点高度比右子树7节点大2,左子树3节点的左子树1节点高度大于右子树4节点,这种情况成为左左。

  2) 6节点的左子树2节点高度比右子树7节点大2,左子树2节点的左子树1节点高度小于右子树4节点,这种情况成为左右。

  3) 2节点的左子树1节点高度比右子树5节点小2,右子树5节点的左子树3节点高度大于右子树6节点,这种情况成为右左。

  4) 2节点的左子树1节点高度比右子树4节点小2,右子树4节点的左子树3节点高度小于右子树6节点,这种情况成为右右。

  从图2中可以可以看出,1和4两种情况是对称的,这两种情况的旋转算法是一致的,只需要经过一次旋转就可以达到目标,我们称之为单旋转。2和3两种情况也是对称的,这两种情况的旋转算法也是一致的,需要进行两次旋转,我们称之为双旋转。

  单旋转

  单旋转是针对于左左和右右这两种情况的解决方案,这两种情况是对称的,只要解决了左左这种情况,右右就很好办了。图3是左左情况的解决方案,节点k2不满足平衡特性,因为它的左子树k1比右子树Z深2层,而且k1子树中,更深的一层的是k1的左子树X子树,所以属于左左情况。

为使树恢复平衡,我们把k2变成这棵树的根节点,因为k2大于k1,把k2置于k1的右子树上,而原本在k1右子树的Y大于k1,小于k2,就把Y置于k2的左子树上,这样既满足了二叉查找树的性质,又满足了平衡二叉树的性质。

  这样的操作只需要一部分指针改变,结果我们得到另外一颗二叉查找树,它是一棵AVL树,因为X向上一移动了一层,Y还停留在原来的层面上,Z向下移动了一层。整棵树的新高度和之前没有在左子树上插入的高度相同,插入操作使得X高度长高了。因此,由于这颗子树高度没有变化,所以通往根节点的路径就不需要继续旋转了。

  双旋转

  对于左右和右左这两种情况,单旋转不能使它达到一个平衡状态,要经过两次旋转。双旋转是针对于这两种情况的解决方案,同样的,这样两种情况也是对称的,只要解决了左右这种情况,右左就很好办了。图4是左右情况的解决方案,节点k3不满足平衡特性,因为它的左子树k1比右子树Z深2层,而且k1子树中,更深的一层的是k1的右子树k2子树,所以属于左右情况。

为使树恢复平衡,我们需要进行两步,第一步,把k1作为根,进行一次右右旋转,旋转之后就变成了左左情况,所以第二步再进行一次左左旋转,最后得到了一棵以k2为根的平衡二叉树。

不明白左右旋转看:https://www.jb51.net/article/154428.htm

    平衡二叉树之红黑树

红黑树的定义:红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(logn)时间内做查找,插入和删除,这里的n是树中元素的数目。

  红黑树和AVL树一样都对插入时间、删除时间和查找时间提供了最好可能的最坏情况担保。这不只是使它们在时间敏感的应用如实时应用(real time application)中有价值,而且使它们有在提供最坏情况担保的其他数据结构中作为建造板块的价值;例如,在计算几何中使用的很多数据结构都可以基于红黑树。此外,红黑树还是2-3-4树的一种等同,它们的思想是一样的,只不过红黑树是2-3-4树用二叉树的形式表示的。

  红黑树的性质:

  红黑树是每个节点都带有颜色属性的二叉查找树,颜色为红色或黑色。在二叉查找树强制的一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:

  性质1. 节点是红色或黑色。

  性质2. 根是黑色。

  性质3. 所有叶子都是黑色(叶子是NIL节点)。

  性质4. 每个红色节点必须有两个黑色的子节点。(从每个叶子到根的所有路径上不能有两个连续的红色节点。)

  性质5. 从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点。

这些约束确保了红黑树的关键特性: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。要知道为什么这些性质确保了这个结果,注意到性质4导致了路径不能有两个毗连的红色节点就足够了。最短的可能路径都是黑色节点,最长的可能路径有交替的红色和黑色节点。因为根据性质5所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。

红黑树的自平衡操作:

  因为每一个红黑树也是一个特化的二叉查找树,因此红黑树上的只读操作与普通二叉查找树上的只读操作相同。然而,在红黑树上进行插入操作和删除操作会导致不再符合红黑树的性质。恢复红黑树的性质需要少量(O(logn))的颜色变更(实际是非常快速的)和不超过三次树旋转(对于插入操作是两次)。虽然插入和删除很复杂,但操作时间仍可以保持为O(logn) 次。

  我们首先以二叉查找树的方法增加节点并标记它为红色。如果设为黑色,就会导致根到叶子的路径上有一条路上,多一个额外的黑节点,这个是很难调整的(违背性质5)。但是设为红色节点后,可能会导致出现两个连续红色节点的冲突,那么可以通过颜色调换(color flips)和树旋转来调整。下面要进行什么操作取决于其他临近节点的颜色。同人类的家族树中一样,我们将使用术语叔父节点来指一个节点的父节点的兄弟节点。注意:

  • 性质1和性质3总是保持着。
  • 性质4只在增加红色节点、重绘黑色节点为红色,或做旋转时受到威胁。
  • 性质5只在增加黑色节点、重绘红色节点为黑色,或做旋转时受到威胁。

具体的插入以及删除操作,原理就是树的旋转与节点颜色的调整。具体参考博文:https://www.cnblogs.com/duye/p/9521102.html  整理的比较全面。

H、B树也是一种用于查找的平衡树,但是它不是二叉树。

B树的定义:B树(B-tree)是一种树状数据结构,能够用来存储排序后的数据。这种数据结构能够让查找数据、循序存取、插入数据及删除的动作,都在对数时间内完成。B树,概括来说是一个一般化的二叉查找树,可以拥有多于2个子节点。与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作。B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度。这种数据结构常被应用在数据库和文件系统的实作上。

  在B树中查找给定关键字的方法是,首先把根结点取来,在根结点所包含的关键字K1,…,Kn查找给定的关键字(可用顺序查找或二分查找法),若找到等于给定值的关键字,则查找成功;否则,一定可以确定要查找的关键字在Ki与Ki+1之间,Pi为指向子树根节点的指针,此时取指针Pi所指的结点继续查找,直至找到,或指针Pi为空时查找失败。

  B树作为一种多路搜索树(并不是二叉的):

  1) 定义任意非叶子结点最多只有M个儿子;且M>2;

  2) 根结点的儿子数为[2, M];

  3) 除根结点以外的非叶子结点的儿子数为[M/2, M];

  4) 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

  5) 非叶子结点的关键字个数=指向儿子的指针个数-1;

  6) 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

  7) 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

  8) 所有叶子结点位于同一层;

如下图为一个M=3的B树示例:

B树创建的示意图:

此处例子也可以参考:https://blog.51cto.com/11864647/2162768

I、B+树是B树的变体,也是一种多路搜索树:

  1) 其定义基本与B-树相同,除了:

  2) 非叶子结点的子树指针与关键字个数相同;

  3) 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

  4) 为所有叶子结点增加一个链指针;

  5) 所有关键字都在叶子结点出现;

  下图为M=3的B+树的示意图:

  B+树的搜索与B树也基本相同,区别是B+树只有达到叶子结点才命中(B树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

  B+的性质:

  1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

  2.不可能在非叶子结点命中;

  3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

  4.更适合文件索引系统。

  下面为一个B+树创建的示意图:

J、B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针,将结点的最低利用率从1/2提高到2/3。

  B*树如下图所示:

  B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

  B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

  B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

  所以,B*树分配新结点的概率比B+树要低,空间使用率更高。

K、Trie树,Tire树称为字典树,又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。 

  Tire树的三个基本性质:

  1) 根节点不包含字符,除根节点外每一个节点都只包含一个字符;

  2) 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串;

  3) 每个节点的所有子节点包含的字符都不相同。

  Tire树的应用:

  1) 串的快速检索

  给出N个单词组成的熟词表,以及一篇全用小写英文书写的文章,请你按最早出现的顺序写出所有不在熟词表中的生词。

在这道题中,我们可以用数组枚举,用哈希,用字典树,先把熟词建一棵树,然后读入文章进行比较,这种方法效率是比较高的。

  2) “串”排序

  给定N个互不相同的仅由一个单词构成的英文名,让你将他们按字典序从小到大输出。用字典树进行排序,采用数组的方式创建字典树,这棵树的每个结点的所有儿子很显然地按照其字母大小排序。对这棵树进行先序遍历即可。

  3) 最长公共前缀

  对所有串建立字典树,对于两个串的最长公共前缀的长度即他们所在的结点的公共祖先个数,于是,问题就转化为求公共祖先的问题。

 

 

 

参考博客:

https://blog.51cto.com/9291927/2063393

https://blog.csdn.net/cherrydreamsover/article/details/80466781

https://www.jianshu.com/p/bf73c8d50dc2

https://www.cnblogs.com/duye/p/9521102.html   重要

https://blog.51cto.com/11864647/2162768   重要

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值