- 博客(28)
- 资源 (1)
- 收藏
- 关注
转载 R中设置图形参数--函数par()详解
R有着非常强大的绘图功能,我们可以利用简单的几行代码绘制出各种图形来,但是有时候默认的图形设置没法满足我们的需要,甚至会碰到各种各样的小问题:如坐标轴或者标题出界了,或者图例说明的大小或者位置遮挡住了图形,甚至有时候默认的颜色也不能满足我们的需求。如何进行调整呢?这就用到了“强大”的函数par()。我们可以通过设定函数par()的各个参数来调整我们的图形,这篇博文就是对函数par()的各个参数进行
2016-10-30 13:47:44 2783
转载 R语言里面的lag()和diff()函数
R里面的LAG只适用于时间序列,不适合于dataframe或者向量,因此需要自己写一个小小的函数来实现lag的功能。lagdf c(rep(NA, k), x)[1 : length(x)] }ycbind(x,y)R 里面的diff()函数倒是支持数值向量另外一种常用的计算lag()的方法log.yahoo 如果直接使用diff(l
2016-10-30 13:10:34 32360
原创 c
10200-日期收盤價40300-日期收盤價########6174########229.4########6080########224.8########6013########222.9########6017########222.5########5965##
2016-10-12 17:34:25 1154
原创 共整合r
# 指定路徑為桌面setwd("C:/Users/user2/Desktop")# 讀入csv檔rawdata# 把title名稱轉為英文# x = 10200 y = 40300names(rawdata)[1]names(rawdata)[2]names(rawdata)[3]names(rawdata)[4]
2016-10-12 16:38:01 789
转载 資料庫
http://mirlab.org/jang/books/asp/odbc&dsn.asp?title=18-1%20ODBC%20%BBP%20DSN%20%C2%B2%A4%B618-1 ODBC 與 DSN 簡介
2016-10-04 11:01:05 33944
原创 共整合.協整
https://www.douban.com/note/299044068/用R检验配对股票的协整性http://www.quantmod.com/examples/intro/#data
2016-10-03 17:20:11 575
转载 留學資料
http://www.1point3acres.com/bbs/thread-95831-1-1.html14Fall 非名校本科的统计PhD/部分MS申请经验
2016-10-03 14:38:47 258
原创 ARMA
http://www.morefund.com/a/duichongshidian/2011/0422/327.htmlhttp://lidequan12345.blog.163.com/blog/static/28985036201321074325444/http://classroom.dufe.edu.cn/spsk/c102/wlkj/CourseConten
2016-09-26 16:46:02 968
转载 广告联盟中的CPA、CPS、CPC、CPM分别是什么意思
http://wenku.baidu.com/view/4db5874cfe4733687e21aaab.html
2016-05-12 15:04:38 2680
转载 CRM
CRM 锁定本词条由“科普中国”百科科学词条编写与应用工作项目 审核 。CRM即客户关系管理,是指企业用CRM技术来管理与客户之间的关系。在不同场合下,CRM可能是一个管理学术语,可能是一个软件系统。通常所指的CRM,指用计算机自动化分析销售、市场营销、客户服务以及应用等流程的软件系统。它的目标是通过提高客户的价值、满意度、赢利性和忠实度来缩减销售周期和销售成本、增加收
2016-05-12 14:58:22 1180
转载 关键意见领袖
关键意见领袖关键意见领袖(Key Opinion Leader,简称KOL)目录[隐藏]1 什么是关键意见领袖2 关键意见领袖的特征3 相关条目[编辑]什么是关键意见领袖 在营销学上,为各厂家宣传的专家或权威被称为“关键意见领袖(Key Opinion Leader),通常被定义为:拥
2016-05-12 14:54:35 1513
原创 大數據統計建模案例課
20160301 了解方法後 如何用在具體問題中 嘗試從具體問題出發不侷限於案例 基本分析框架下運用新學的知識 結合 抓住問題本質建模:真實世界 量化 抽出數字概念考慮變量之間的關係 建立模型分析誤差結論 統計在大數據環境下能做的不多,真實>>變量(計數)>>整合到模型 總結變量間的關係 比直接從經驗更可靠 >>誤差 關於全樣本誤差的議題:雖然目前有
2016-04-18 22:14:17 1210
原创 基于Item的推荐系统-使用RHadoop运算
一、基本想法 基于物品的推荐系统是基于用户对物品的偏好找到相似的物品,然后根据用户的历史偏好,推荐相似的物品给他。从计算的角度来看,就是将所有用户对某个物品的偏好作为一个向量来计算物品之间的相似度,得到物品的相似物品后,根据用户历史的偏好预测当前用户还没有表示偏好的物品,计算得到一个排序的物品列表作为推荐。 二、算法 Item-based 推荐系统根据用户对相似物品的评
2016-04-18 22:09:59 1034
原创 大數據統計建模上課筆記
20160223一、關於課程1. 大數據統計建模是一門新課,沒人開過,沒有教科書,也沒有足夠論文形成體系。(論文正在做,還沒發表例如:分佈式的高微計算)2. 書的形成:研究 → 形成體系 → 形成學科 → 重要內容被提取 → 整理成教科書'3. 是必修中最後一門課。其他五門都是成熟的課,來自成熟的學科,其他五門沒教到的,剩下的都是這門課。
2016-04-18 22:03:16 472
原创 1
http://xueqiu.com/9292284780/57212883http://www.p5w.net/fund/clbg/201604/t20160412_1413740.htmhttp://www.p5w.net/fund/clbg/201604/t20160412_1413687.htmhttp://zhidao.baidu.com/question/170320
2016-04-12 16:13:10 671
翻译 交易型開放式指數基金ETF
ETF是如何在一、二级市场交易的? ETF实现套利有两种方式,当ETF溢价交易时,即二级市场价格高于其净值交易的时候,ETF的一级市场参与者可以通过买入与基金当日公布的一揽子股票构成相同的组合,在一级市场申购ETF,然后在交易所卖出相应份额的ETF。这样,如果不考虑交易费用,投资者在股票市场购入股票的成本应该等于ETF的单位净值,由于ETF在二级市场是溢价交易的,投资者就可以获取其中的差价。
2016-04-08 18:30:50 671
原创 基金介紹
大数据投资通过大数据挖掘,可以更精准地估算宏观经济、行业景气度、上市公司基本面,甚至一些前沿的行为金融学领域也可以进行数据量化,是传统投资的有益补充。相關名詞一级市场&二级市场一级市场是发行市场,就是投资者从发行人那里认购股票或基金;二级市场是交易市场,就是各个投资者之间进行的上市证券的交易买卖;有个三板市场,就是对退市股票或股改的股票进行交易。
2016-04-08 18:01:04 514
转载 A股,B股,ST股
股票的分类有个国际的通用标准,中国涨跌停板都是10%!一个公司可以同时发行a、b、h股,当然要看具体的部门的审批了。具体分析如下:------------------- 1.A股的正式名称是人民币普通股票。它是由我同境内的公司发行供境内机构、组织或个人(不含台、港、澳投资者)以人民币认购和交易的普通股股票我国A股股票市场经过几年快速发展,已经初具规模。---
2016-04-08 17:58:48 999
原创 社交網絡一
鄰居節點鄰接矩陣網路的度連通分支無向圖有像圖 弱連通分支>>當成無向圖巨大連通分支-子圖規模達到整個網路的規模節點之間的距離 最短路徑網絡直徑 兩個節點間距離的最大值 包含所有節點現實網絡 無標度分佈 冪律分佈hub節點 度大的節點聚類係數現
2016-04-05 16:13:07 521
原创 非結構化數據分析三
GMM 高斯混合模型方法 被聚到某類的概率 >>信息量較多假設數據服從高斯混合分布從K個高斯分布生成目標: 求3K個參數 (W係數 MU SIGMA)評價方式:似然函數最高EX
2016-04-05 14:20:45 286
原创 非結構化分析二
決策邊界二維分類線性分類器 常用文本分類器都是線性分類器 樸素貝葉思 羅吉回歸 支持向量機 選擇分割面的方式不同非線性分類器並不一定比線性分類器好 貝葉思及其在郵件過濾中的應用垃圾郵件問題傳統的垃圾郵件過濾法 主要有關鍵詞法 特定詞語判斷 校驗碼法 計算文本校驗碼2002 paul graham提出使用貝葉斯推斷過濾垃圾郵件 訓練集越
2016-03-22 17:56:03 225
原创 L21匿名函數lambda()
lambda(參數:返回值)>>> def ds(x): return 2*x+1>>> ds(5)11>>> lambda x : 2*x+5 at 0x02C66D68>>>> g = lambda x : 2*x+5>>> g(5)15兩個參數>>> def add(x,y): return x + y>>> add(3,4)7>>> >>
2016-03-18 15:52:42 239
原创 非結構化數據分析
結構化數據>>數據庫 二維表 非結構化數據>>信息檢索 自由文本最典型 圖片 視頻 音頻 以關鍵字查詢半結構化數據文本挖掘的基本流程:分詞tokenizer文法處理 把他還原成原始單詞 linguistic modules每個詞作為一列 變成結構化數據>>表 structured data 數據挖掘 關聯分析 異常點檢測
2016-03-15 17:26:36 342
原创 hw14+16
0. 请写一个密码安全性检查的脚本代码:check.py1. #密码安全性检查代码2. #3. #低级密码要求:4. # 1.密码由单纯的数字或字母组成5. # 2.密码长度小于等于8位6. #7. #中级密码要求:8. # 1.密码必须由数字、字母或特殊字符(仅限:~!@#$%^&*()_=-/,.?)任意两种组合9. # 2.密码长度不能低于8位
2016-03-15 07:48:52 937
原创 L20函數:內嵌函數和閉包
global關鍵字如果函數內部試圖修改全局變量,python會自己屏蔽(shadowing)>>> count = 5>>> def myfun(): count = 10 print(10) >>> myfun()10>>> print(count)5加入global關鍵字 聲明函數內的該變量是全局變量>>>
2016-03-14 07:34:55 247
原创 L19函數:我的地盤聽我的
函數function有返回值過程procedure簡單的特殊的沒有返回值python嚴格來說只有函數沒有過程>>> def hello(): print("hello") >>> temp = hello()hello>>> temp>>> print(temp)None
2016-03-13 09:34:42 337
原创 L18函數:靈活即強大
形式函數(parameter): 函數創建和定義過程中小括號裡面的參數實際函數(argument): 實際調用過程中傳遞進去的參數>>> def MyFirstFunction(name): "函數定義過程中的name是形參" #因為他只是一個形式,表示佔據一個函數位置 print("傳遞進來的 " + name + " 是實參,因為他是具體的參數值
2016-03-12 06:38:55 206
ARCH-GARCH模型.pdf
2010-05-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人