两个方面的原因
Sigmoid 函数自身的性质
-
sigmoid 函数连续,单调递增
-
sigmiod 函数关于(0,0.5) 中心对称
-
对sigmoid函数求导
p ′ = p ∗ ( 1 − p ) p′=p∗(1−p) p′=p∗(1−p)
计算sigmoid函数的导数非常的快速
LR可以推出来sigmod函数
用 指数簇分布推导出来的sigmod函数
p
(
y
;
η
)
=
b
(
y
)
e
x
p
(
η
T
(
y
)
−
α
(
η
)
)
p(y;\eta) =b(y)exp\big(\eta T(y)- \alpha(\eta)\big)
p(y;η)=b(y)exp(ηT(y)−α(η))
二 者 统 一 起 来 则 有 α ( η ) = − l o g ( 1 − ϕ ) b ( y ) = 1 T ( y ) = y η = l o g ( ϕ 1 − ϕ ) 反 推 出 ϕ = e η 1 + e η 二者统一起来则有\\ \alpha(\eta) = -log(1-\phi)\\ b(y)=1\\ T(y)=y\\ \eta = log(\frac{\phi}{1-\phi})\\ 反推出 \phi = \frac{e^\eta}{1+e^\eta} 二者统一起来则有α(η)=−log(1−ϕ)b(y)=1T(y)=yη=log(1−ϕϕ)反推出ϕ=1+eηeη