LR为什么使用sigmoid函数

两个方面的原因

Sigmoid 函数自身的性质
  • sigmoid 函数连续,单调递增

  • sigmiod 函数关于(0,0.5) 中心对称

  • 对sigmoid函数求导

    p ′ = p ∗ ( 1 − p ) p′=p∗(1−p) p=p(1p)

    计算sigmoid函数的导数非常的快速

LR可以推出来sigmod函数

用 指数簇分布推导出来的sigmod函数
p ( y ; η ) = b ( y ) e x p ( η T ( y ) − α ( η ) ) p(y;\eta) =b(y)exp\big(\eta T(y)- \alpha(\eta)\big) p(y;η)=b(y)exp(ηT(y)α(η))

在这里插入图片描述

二 者 统 一 起 来 则 有 α ( η ) = − l o g ( 1 − ϕ ) b ( y ) = 1 T ( y ) = y η = l o g ( ϕ 1 − ϕ ) 反 推 出 ϕ = e η 1 + e η 二者统一起来则有\\ \alpha(\eta) = -log(1-\phi)\\ b(y)=1\\ T(y)=y\\ \eta = log(\frac{\phi}{1-\phi})\\ 反推出 \phi = \frac{e^\eta}{1+e^\eta} α(η)=log(1ϕ)b(y)=1T(y)=yη=log(1ϕϕ)ϕ=1+eηeη

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值