机器学习
文章平均质量分 85
ysjy13
这个作者很懒,什么都没留下…
展开
-
初步理解六__《面向互联网大数据的威胁情报 并行挖掘技术研究 》
CVE(Common Vulnerabilities and Exposures)的全称是“公共漏洞和暴露”,它是由MITRE(麻省理工学院的一个非营利性组织)在1999年发起的一个项目。CVE的目的是为各种公开知晓的信息安全漏洞和风险提供一个标准化的名称或标识符,以便全球范围内的安全专家、研究人员、IT专业人员等能够在一个统一的标准下讨论、分析和修复这些漏洞。定义:CAPEC是一个公开的常见攻击模式列表和分类系统,它描述了攻击者利用网络功能中的已知弱点所使用的常见属性和方法。目的。原创 2024-07-08 16:36:43 · 806 阅读 · 0 评论 -
初步理解七__《面向互联网大数据的威胁情报 并行挖掘技术研究》
TAXII 是由 MITRE 公司开发的一个标准,旨在促进网络威胁情报的自动化交换。它定义了一系列的概念、协议和消息格式,使得不同的组织和产品/服务之间能够方便地共享可操作的网络威胁信息。TAXII 不是一个信息共享计划或应用,而是提供了一个框架,帮助组织提升对于新型威胁的态势感知能力,并便于组织选择合作伙伴共享信息。原创 2024-07-08 16:37:59 · 1313 阅读 · 0 评论 -
初步理解五__《面向互联网大数据的威胁情报 并行挖掘技术研究》
融合标签的互信息熵作为输入特征是一种有效的方法,用于捕捉标签之间的相关性和共享信息量。然而,需要注意的是,互信息熵的计算可能涉及大量的数据处理和计算资源,因此在实际应用中需要权衡计算成本和性能提升之间的关系。具体来说,如果有一组融合后的标签,可以通过计算这些标签之间的互信息熵来构建输入特征。然后,这些特征可以被用作机器学习模型的输入,以学习标签之间的潜在模式和关系。在机器学习或数据处理的上下文中,将融合标签的互信息熵作为输入特征,意味着将不同标签之间的相关性或共享信息量作为模型的一个输入。原创 2024-07-08 16:35:40 · 589 阅读 · 0 评论 -
初步理解四__《面向互联网大数据的威胁情报 并行挖掘技术研究》
广播变量(Broadcast Variables)是 Spark 中用于在集群中共享数据的一种机制。*只读的变量,从而在每个节点(executor)上只复制一份数据,而不是每个任务都复制一份。**这样可以大大减少网络传输的数据量,提高了任务的执行效率。原创 2024-07-08 16:34:27 · 1075 阅读 · 0 评论 -
初步理解三__《面向互联网大数据的威胁情报 并行挖掘技术研究》
本报告旨在分析当前开源网络安全领域的现状、挑战、最佳实践及未来趋势。通过收集和分析多个开源项目、研究报告及行业专家的观点,我们为网络安全从业者提供了全面的洞察。威胁情报战术分类主要关注具体的网络攻击活动,这类情报包含IP地址、域名、文件哈希值等细节信息,旨在帮助安全团队检测并应对针对企业的具体网络威胁。战术威胁情报的多标签数据集是指每个样本(如网络攻击事件、恶意软件样本等)可以被分配多个战术标签(如勒索软件攻击、钓鱼攻击、DDoS攻击等)的数据集。原创 2024-07-08 16:32:28 · 1422 阅读 · 0 评论 -
初步理解一__《面向互联网大数据的威胁情报 并行挖掘技术研究》
定义:网络安全威胁情报是通过对网络攻击、网络漏洞、网络情报等进行系统分析,识别并汇总有关网络安全威胁的情报信息。这些信息包括攻击者的IP地址、攻击方式、攻击目标、攻击工具和攻击时段等。重要性主动防御:威胁情报使安全专业人员能够做出更明智的判断,从被动防御转为主动防御。风险降低:通过了解威胁参与者的决策过程,企业和组织可以智能投资、最大限度地降低风险。快速响应:帮助企业和个人更好地了解攻击者、更快地响应危机并预测威胁者的下一步行动。网络安全威胁情报是企业和个人在保障网络安全中不可或缺的一部分。原创 2024-07-07 21:19:11 · 747 阅读 · 0 评论