LeetCode
摘樱桃
题目描述
给你一个 n x n
的网格 grid
,代表一块樱桃地,每个格子由以下三种数字的一种来表示:
0
表示这个格子是空的,所以你可以穿过它。1
表示这个格子里装着一个樱桃,你可以摘到樱桃然后穿过它。-1
表示这个格子里有荆棘,挡着你的路。
请你统计并返回:在遵守下列规则的情况下,能摘到的最多樱桃数:
- 从位置
(0, 0)
出发,最后到达(n - 1, n - 1)
,只能向下或向右走,并且只能穿越有效的格子(即只可以穿过值为0
或者1
的格子); - 当到达
(n - 1, n - 1)
后,你要继续走,直到返回到(0, 0)
,只能向上或向左走,并且只能穿越有效的格子; - 当你经过一个格子且这个格子包含一个樱桃时,你将摘到樱桃并且这个格子会变成空的(值变为
0
); - 如果在
(0, 0)
和(n - 1, n - 1)
之间不存在一条可经过的路径,则无法摘到任何一个樱桃。
示例 1:
输入:grid = [[0,1,-1],[1,0,-1],[1,1,1]]
输出:5
解释:玩家从 (0, 0) 出发:向下、向下、向右、向右移动至 (2, 2) 。
在这一次行程中捡到 4 个樱桃,矩阵变成 [[0,1,-1],[0,0,-1],[0,0,0]] 。
然后,玩家向左、向上、向上、向左返回起点,再捡到 1 个樱桃。
总共捡到 5 个樱桃,这是最大可能值。
示例 2:
输入:grid = [[1,1,-1],[1,-1,1],[-1,1,1]]
输出:0
提示:
n == grid.length
n == grid[i].length
1 <= n <= 50
grid[i][j]
为-1
、0
或1
grid[0][0] != -1
grid[n - 1][n - 1] != -1
思路
DP
代码
C++
class Solution {
public:
int cherryPickup(vector<vector<int>>& grid) {
int n = grid.size();
vector<vector<vector<int>>> f(n * 2 - 1, vector<vector<int>>(n + 1, vector<int>(n + 1, INT_MIN)));
f[0][1][1] = grid[0][0];
for (int t = 1; t < n * 2 - 1; t++) {
for (int j = max(t - n + 1, 0); j <= min(t, n - 1); j++) {
if (grid[t - j][j] < 0) continue;
for (int k = j; k <= min(t, n - 1); k++) {
if (grid[t - k][k] < 0) continue;
f[t][j + 1][k + 1] = max({f[t - 1][j + 1][k + 1], f[t - 1][j + 1][k], f[t - 1][j][k + 1], f[t - 1][j][k]}) +
grid[t - j][j] + (k != j ? grid[t - k][k] : 0);
}
}
}
return max(f[n * 2 - 2][n][n], 0);
}
};
Java
class Solution {
public int cherryPickup(int[][] grid) {
int n = grid.length;
int[][][] f = new int[n * 2 - 1][n + 1][n + 1];
for (int[][] m : f) {
for (int[] r : m) {
Arrays.fill(r, Integer.MIN_VALUE);
}
}
f[0][1][1] = grid[0][0];
for (int t = 1; t < n * 2 - 1; t++) {
for (int j = Math.max(t - n + 1, 0); j <= Math.min(t, n - 1); j++) {
if (grid[t - j][j] < 0) continue;
for (int k = j; k <= Math.min(t, n - 1); k++) {
if (grid[t - k][k] < 0) continue;
f[t][j + 1][k + 1] = Math.max(Math.max(f[t - 1][j + 1][k + 1], f[t - 1][j + 1][k]), Math.max(f[t - 1][j][k + 1], f[t - 1][j][k])) +
grid[t - j][j] + (k != j ? grid[t - k][k] : 0);
}
}
}
return Math.max(f[n * 2 - 2][n][n], 0);
}
}