抄书问题2 (复制书稿) 单调性优化dp + 序列划分模型

本文探讨了一个经典的优化问题——抄书问题。目标是最小化完成任务所需的最长时间,通过分配连续的书籍给固定数量的人员进行复制。文章提供了一种有效的算法实现,并详细解释了其背后的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3163 抄书问题 2

 时间限制: 2 s
 空间限制: 256000 KB
 题目等级 : 钻石 Diamond
题目描述 Description

现在要把M本有顺序的书分给K个人复制(抄写),每一个人的抄写速度都一样,一本书不允许给两个(或以上)的人抄写,分给每一个人的书,必须是连续的,比 如不能把第一、第三、第四本数给同一个人抄写。现在请你设计一种方案,使得复制时间最短。复制时间为抄写页数最多的人用去的时间。

(本题数据范围扩大,本题支持 O(nk) 算法)

输入描述 Input Description

第一行两个整数MK;(K<=1000 M<=10000  满足 k<=m)

第二行M个整数,第i个整数表示第i本书的页数。

输出描述 Output Description

K行,每行两个正整数,第i行表示第i个人抄写的书的起始编号和终止编号。K行的起始编号应该从小到大排列,如果有多解,则尽可能让前面的人少抄写。

样例输入 Sample Input

9 3

1 2 3 4 5 6 7 8 9

样例输出 Sample Output

1 5

6 7

8 9

数据范围及提示 Data Size & Hint

详见试题 

本题支持 O(nk) 算法

分类标签 Tags 点此展开 


#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#define f(a,b)   (sum[b]-sum[a-1])
using namespace std;
typedef long long ll;
const int INF =0x3f3f3f3f;
const int maxn=1000    ;
const int maxm=10000    ;


int dp[maxn+5][maxm+5],a[maxm+5];
int n,m;
int sum[maxm+5];
int ans;

void print(int num ,int v)
{

    int best;

    if(num==1)   {printf("%d %d\n",1,v);return;}
    for(int k=num-1;k<v;k++)
    {

        int ret=max(dp[num-1][k],sum[v]-sum[k]);
        if(ret<=ans  )
        {
            best=k;
            break;
        }
    }


   print(num-1,best);
    printf("%d %d\n",best+1,v);


}
int main()
{
    while(~scanf("%d%d",&m,&n))
    {
        if(m==0)
        {
            continue;
        }
        sum[0]=0;
        for(int i=1;i<=m;i++)
        {
            scanf("%d",&a[i]);
            sum[i]=sum[i-1]+a[i];
            dp[1][i]=sum[i];
        }


        for(int i=2;i<=n;i++)//i个人
        {
            int k=i;
            dp[i][k]=max(dp[i-1][k-1], a[k] );
            for(int j=i+1;j<=m-(n-i) ;j++ )
            {

                if(   f(k,j)<=dp[i-1][k-1]   )
                {
                    dp[i][j]=dp[i-1][k-1]   ;
                }
                else if(  a[j]>=dp[i-1][j-1]  )
                {
                    dp[i][j]=a[j];
                    k=j;
                }
                else
                {
                    while( f(k+1,j)>=dp[i-1][k]  )  k++;
                    dp[i][j]=min( f(k,j),dp[i-1][k]);
                    if( dp[i][j]== dp[i-1][k]    )  k++;
                }
            }
        }
        ans=dp[n][m];
        print(n,m);


    }


   return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值