输出用cout,不然用lld和I64d都会wa。
对于每一个建筑物,要知道往左到哪一个建筑第一个高度比它低,知道往右走哪一个建筑物第一个高度比它低。
可以用dp,也可以用单调队列。
首先从左往右,构造单增队列,这样始终有一个最小值,每加入一个高度h,先把队尾处大于等于它的高度全部删掉。
因为后面的高度,如果高度比h大,那么找到h就停止了,如果高度<=h,那么高度也一定<=删掉的元素。所以被删的元素不需要保留。
如果队列空了,证明h是从1开始到ind[h]的高度最小值。
【单调队列】广告印刷
Time Limit:10000MS Memory Limit:65536K
Total Submit:264 Accepted:100
Case Time Limit:1000MS
Description
最近,afy决定给TOJ印刷广告,广告牌是刷在城市的建筑物上的,城市里有紧靠着的N(N<=400000)个建筑。afy决定在上面找一块尽可能大的矩形放置广告牌。我们假设每个建筑物都有一个高度,从左到右给出每个建筑物的高度H1,H2…HN,0<=Hi<=1,000,000并且我们假设每个建筑物的宽度均为1。要求输出广告牌的最大面积。
Input
第一行,一个整数N
第二行,N个空格间隔的整数,表示从左往右每栋楼的高度
Output
一个整数,表示最大面积
Sample Input
6
5 8 4 4 8 4
Sample Output
24
Source
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define all(x) (x).begin(), (x).end()
#define for0(a, n) for (int (a) = 0; (a) < (n); (a)++)
#define for1(a, n) for (int (a) = 1; (a) <= (n); (a)++)
typedef long long ll;
typedef pair<int, int> pii;
//const int INF =0x3f3f3f3f;
const int maxn=400000 ;
int n;
int q[maxn+10],a[maxn+10];
int L[maxn+10],R[maxn+10];
void getL()//维护单增队列
{
int rear=1,front=1;
for1(i,n)
{
while(rear-front>0&& a[q[rear-1] ]>= a[i]) rear--;
if(rear-front==0) L[i]=1;
else L[i]=q[rear-1]+1;
q[rear++]=i;
}
}
void getR()
{
ll ret=0,maxi=0;
int rear=1,front=1;
for(int i=n;i>=1;i--)
{
while(rear-front>0&& a[q[rear-1] ]>= a[i]) rear--;
if(rear-front==0) R[i]=n;
else R[i]=q[rear-1]-1;
q[rear++]=i;
ret= (ll)a[i]*(R[i]-L[i]+1);
maxi=max(maxi,ret);
}
cout<<maxi<<endl;
}
int main()
{
scanf("%d",&n);
{
for1(i,n)
{
scanf("%d",&a[i]);
}
getL();
getR();
}
return 0;
}
/*
3
3 2 1
*/