题意:给出一个序列,1<=a[i]<=i,判断能否在每个a[i]之前添加'+'或'-'使得和等于0。
结论:对于1<=a[i]<=i的序列,前i个数可以凑成[1,sum[i]]中的每个数。
证明:设对k成立, 则 前k个数可以凑成[1,sum[k]]
要证明 k+1可凑成sum[k]+x (1<=x<=a[k+1])
只需证明 sum[k]+x-a[k+1]可由k凑成
因为 0<= sum[k]+x-a[k+1]<=sum[k]
由于k可凑成[1,sum[k]],且sum[k]+x-a[k+1]=0时,sum[k]+x=a[k+1] 已经凑成0
所以 k+1可凑成sum[k]+x
解法:
如果2|sum[n], 从右向左扫描,如果sum[n]/2 >=a[n],那么a[n]可选,且剩下[1,n-1]一定可以可凑成sum[n]/2-a[n]
因为前n-1个可凑成的数是连续的 , 所以n-1可凑成[1,sum[n]/2 -a[n]]。
如果sum[n-1]<=sum[n]/2-a[n] ,那么可选。
否则不可........
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define all(x) (x).begin(), (x).end()
#define for0(a, n) for (int (a) = 0; (a) < (n); (a)++)
#define for1(a, n) for (int (a) = 1; (a) <= (n); (a)++)
typedef long long ll;
typedef pair<int, int> pii;
const int INF =0x3f3f3f3f;
const int maxn= 100000 ;
int n,a[maxn+10],ans[maxn+10];
int main()
{
while(~scanf("%d",&n))
{
ll sum=0;
for1(i,n)
{
scanf("%d",&a[i]);
sum+=a[i];
}
if(sum&1)
{
puts("No");
continue;
}
puts("Yes");
sum>>=1;
for(int i=n;i>=1;i--)
{
if(a[i]<=sum)
{
sum-=a[i];
ans[i]=+1;
}
else
{
ans[i]=-1;
}
}
for1(i,n)
{
if(i!=1) putchar(' ');
printf("%d",ans[i]);
}
putchar('\n');
}
return 0;
}