概率论与数理统计
ysl_ysl123
这个作者很懒,什么都没留下…
展开
-
概率论小结1
概率论的基本概念一、随机试验具备以下三个特点的试验称为随机试验:1、可以在相同的条件下重复地进行;2、每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3、进行一次试验之前不能确定哪一个结果会出现。二、样本空间将随机试验E的所有可能结果组成的集合称为E的样本空间,记为S。样本空间的元素,即E的每个结果,称为样本点。如抛一颗骰子,观察出现的点数。集合{1,2,3,4,5,...原创 2019-06-07 09:55:19 · 449 阅读 · 0 评论 -
概率论小结2
随即变量及其分布一、随机变量设随机试验的样本空间为S={e}。X=X(e)是定义在样本空间S上的实值单值函数。称X=X(e)为随机变量。(将样本点映射为实值)二、离散型随机变量随机变量全部可能取到的值是有限个或可列无限多个,这种随机变量称为离散型随机变量。1、分布律设离散型随机变量X所有可能取的值为xk(k=1,2,…),X取各个可能值的概率,即事件{X=xk}的概率,为P{X=xk}...原创 2019-06-07 17:10:16 · 294 阅读 · 0 评论 -
概率论小结3
二维随机变量及其分布一、二维随机变量设随机试验的样本空间为S={e}。设X=X(e)和Y=Y(e)是定义在样本空间S上的随机变量。由它们构成的一个向量(X,Y),叫做二维随机向量或二维随机变量。二维随机变量(X,Y)的性质不仅与X及Y有关,还依赖于这两个随机变量的相互关系。二维离散型随机变量定义:如果二维随机变量(X,Y)全部可能取到的值是有限对或可列无限多对,则称(X,Y)是离散型的随机...原创 2019-06-09 17:23:54 · 676 阅读 · 0 评论 -
概率论小结4
随机变量的数字特征一、数学期望定义:1 设离散型随机变量X的分布律为P{X=xk}=pk, k=1,2,…。若级数∑k=1∞xkpk\sum\limits_{k=1}^{\infin}x_kp_kk=1∑∞xkpk绝对收敛,则称级数∑k=1∞xkpk\sum\limits_{k=1}^{\infin}x_kp_kk=1∑∞xkpk的和为随机变量X的数学期望,记为E(X),即E(X...原创 2019-06-16 10:02:05 · 349 阅读 · 0 评论 -
概率论小结5
大数定理及中心极限定理一、大数定理弱大数定理(辛钦大数定理)设X1, X2, … 是相互独立,服从同一分布的随机变量序列,且具有数学期望E(Xk)=μ\muμ (k=1,2,…)。作前n个变量的算术平均1n∑k=1nXk\frac{1}{n}\sum\limits_{k=1}^{n}X_kn1k=1∑nXk,则对于任意ϵ>0\epsilon>0ϵ>0,...原创 2019-06-16 16:52:58 · 183 阅读 · 0 评论 -
概率论小结6
样本及抽样分布一、随机样本定义: 设X是具有分布函数F的随机变量,若X1, X2, …, Xn 是具有同一分布函数F的、相互独立的随机变量,则称X1, X2, …, Xn 为从分布函数F(或总体F、或总体X)得到的容量为n的简单随机样本,简称样本,它们的观察值x1, x2, …, xn 称为样本值,又称为X的n个独立的观察值。试验全部可能的观察值称为总体。一个总体对应于一个随机变量X。每一个...原创 2019-06-23 19:34:30 · 628 阅读 · 0 评论 -
概率论小结7
参数估计一、点估计总体X的分布函数F(x;θ)F(x;\theta)F(x;θ)形式已知,但它的一个或多个参数θ\thetaθ未知,借助于总体X的一个样本X1, X2, …, Xn ,x1, x2, …, xn 是相应的样本值,构造适当的统计量θ^(X1,X2,...,Xn)\hat{\theta}(X_1,X_2,...,X_n)θ^(X1,X2,...,Xn),观察值θ^(x1,x2...原创 2019-06-29 17:29:01 · 292 阅读 · 0 评论