概率论小结7

本文详细介绍了概率论中的参数估计方法,包括矩估计法和最大似然估计法,并探讨了估计量的无偏性、有效性、相合性等评选标准。同时,讲解了区间估计的概念,提供了正态总体均值与方差的区间估计实例,以及(0-1)分布参数的区间估计和单侧置信区间的计算方法。
摘要由CSDN通过智能技术生成

参数估计

一、点估计

总体X的分布函数 F ( x ; θ ) F(x;\theta) F(x;θ)形式已知,但它的一个或多个参数 θ \theta θ未知,借助于总体X的一个样本X1, X2, …, Xnx1, x2, …, xn 是相应的样本值,构造适当的统计量 θ ^ ( X 1 , X 2 , . . . , X n ) \hat{\theta}(X_1,X_2,...,X_n) θ^(X1,X2,...,Xn),观察值 θ ^ ( x 1 , x 2 , . . . , x n ) \hat{\theta}(x_1,x_2,...,x_n) θ^(x1,x2,...,xn)作为未知参数 θ \theta θ的近似值。 θ ^ ( X 1 , X 2 , . . . , X n ) \hat{\theta}(X_1,X_2,...,X_n) θ^(X1,X2,...,Xn)称为估计量 θ ^ ( x 1 , x 2 , . . . , x n ) \hat{\theta}(x_1,x_2,...,x_n) θ^(x1,x2,...,xn)称为估计值

(一)矩估计法
假设总体X的前k阶矩 μ l = E ( X l ) \mu_l=E(X^l) μl=E(Xl)存在,样本矩 A l = 1 n ∑ i = 1 n X i l A_l=\dfrac{1}{n}\sum\limits_{i=1}^{n}X_i^l Al=n1i=1nXil依概率收敛于相应的总体矩 μ l ( l = 1 , 2 , . . . , k ) \mu_l(l=1,2,...,k) μl(l=1,2,...,k),设
{ μ 1 = μ 1 ( θ 1 , θ 2 , . . . , θ k ) , μ 2 = μ 2 ( θ 2 , θ 2 , . . . , θ k ) , ⋮ μ k = μ 2 ( θ 2 , θ 2 , . . . , θ k ) \begin{cases} \mu_1=\mu_1(\theta_1,\theta_2,...,\theta_k),\\ \mu_2=\mu_2(\theta_2,\theta_2,...,\theta_k),\\ \vdots\\ \mu_k=\mu_2(\theta_2,\theta_2,...,\theta_k)\\ \end{cases} μ1=μ1(θ1,θ2,...,θk),μ2=μ2(θ2,θ2,...,θk),μk=μ2(θ2,θ2,...,θk)
是一个包含k个未知参数 θ 1 , θ 2 , . . . , θ k \theta_1,\theta_2,...,\theta_k θ1,θ2,...,θk的联立方程,一般可以从中解出 θ 1 , θ 2 , . . . , θ k \theta_1,\theta_2,...,\theta_k θ1,θ2,...,θk,得到
{ θ 1 = θ 1 ( μ 1 , μ 2 , . . . , μ k ) , θ 2 = θ 2 ( μ 1 , μ 2 , . . . , μ k ) , ⋮ θ k = θ k ( μ 1 , μ 2 , . . . , μ k ) \begin{cases} \theta_1=\theta_1(\mu_1,\mu_2,...,\mu_k),\\ \theta_2=\theta_2(\mu_1,\mu_2,...,\mu_k),\\ \vdots\\ \theta_k=\theta_k(\mu_1,\mu_2,...,\mu_k)\\ \end{cases} θ1=θ1(μ1,μ2,...,μk),θ2=θ2(μ1,μ2,...,μk),θk=θk(μ1,μ2,...,μk)
以样本矩 A i A_i Ai代替上式 μ i , i = 1 , 2 , . . . , k \mu_i,i=1,2,...,k μi,i=1,2,...,k,就以 θ i ^ = θ i ( A 1 , A 2 , . . . , A k ) , i = 1 , 2 , . . . , k \hat{\theta_i}=\theta_i(A_1,A_2,...,A_k),i=1,2,...,k θi^=θi(A1,A2,...,Ak),i=1,2,...,k分别作为 θ i , i = 1 , 2 , . . . , k \theta_i,i=1,2,...,k θi,i=1,2,...,k的估计量,这种估计量称为矩估计量

(二)最大似然估计法
(1)离散型变量X
设总体X的分布律 P { X = x } = p ( x ; θ ) , θ ∈ Θ P\{X=x\}=p(x;\theta), \theta\in\Theta P{ X=x}=p(x;θ),θΘ θ \theta θ是待估参数, Θ \Theta Θ θ \theta θ可能取值的范围。样本X1, X2, …, Xn 的联合分布律为 ∏ i = 1 n p ( x i ; θ ) \prod\limits_{i=1}^{n}p(x_i;\theta) i=1np(xi;θ)x1, x2, …, xn 是相应于X1, X2, …, Xn 的样本值,事件 { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } \{X_1=x_1,X_2=x_2,...,X_n=x_n\} { X1=x1,X2=x2,...,Xn=xn}发生的概率为
L ( θ ) = L ( x 1 , x 2 , . . . , x n ; θ ) = ∏ i = 1 n p ( x i ; θ ) , θ ∈ Θ L(\theta)=L(x_1,x_2,...,x_n;\theta)=\prod\limits_{i=1}^{n}p(x_i;\theta), \theta\in\Theta L(θ)=L(x1,x2,...,xn;θ)=i=1np(xi;θ),θΘ
称为样本的似然函数
固定样本观察值x1, x2, …, xn ,在 θ \theta θ可能取值的范围 Θ \Theta Θ内挑选使似然函数达到最大值的参数值 θ ^ \hat{\theta} θ^,作为参数 θ \theta θ的估计值,即
L ( x 1 , x 2 , . . . , x n ; θ ^ ) = max ⁡ θ ∈ Θ L ( x 1 , x 2 , . . . , x n ; θ ) L(x_1,x_2,...,x_n;\hat{\theta})=\max\limits_{\theta\in\Theta} L(x_1,x_2,...,x_n;\theta) L(x1,x2,...,xn;θ^)=θΘmaxL(x1,x2,...,xn;θ)
这样的 θ ^ \hat{\theta} θ^与样本值x1, x2, …, xn 有关,常记为 θ ^ ( x 1 , x 2 , . . . , x n ) \hat{\theta}(x_1,x_2,...,x_n) θ^(x1,x2,...,xn),称为参数 θ \theta θ最大似然估计值,相应的 θ ^ ( X 1 , X 2 , . . . , X n ) \hat{\theta}(X_1,X_2,...,X_n) θ^(X1,X2,...,Xn)为参数 θ \theta θ最大似然估计量

(2)连续型变量X
设总体X的概率密度 f ( x ; θ ) , θ ∈ Θ f(x;\theta), \theta\in\Theta f(x;θ),θΘ θ \theta θ是待估参数, Θ \Theta Θ θ \theta θ可能取值的范围。样本X1, X2, …, Xn 的联合密度为 ∏ i = 1 n f ( x i ; θ ) \prod\limits_{i=1}^{n}f(x_i;\theta) i=1nf(xi;θ)x1, x2, …, xn 是相应于X1, X2, …, Xn 的样本值,则随机点(X1, X2, …, Xn)落在点(x1, x2, …, xn)的邻域内的概率近似为 ∏ i = 1 n f ( x i ; θ ) d x i \prod\limits_{i=1}^{n}f(x_i;\theta)dx_i i=1nf(xi;θ)dxi,取 θ \theta θ的估计值 θ ^ \hat{\theta} θ^使概率 ∏ i = 1 n f ( x i ; θ ) d x i \prod\limits_{i=1}^{n}f(x_i;\theta)dx_i i=1<

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值