LCA——JD 3055 Nearest Common Ancestors (Tarjon做法(离线))

Nearest Common Ancestors

Time Limit: 1 Sec   Memory Limit: 128 MB

Description

给定N个节点的一棵树,有K次查询,每次查询a和b的最近公共祖先。

样例中的16和7的公共祖先(LCA:Least Common Ancestors)是4。

Input

第一行两个整数N(1 < N <= 105)、K(1 <= K <= 105)

第2~N行,每行两个整数a、b(1 <= a,b <= N),表示a是b的父亲。

第N+1~N+K+1行,每行两个整数a、b(1 <= a,b <= N),表示询问a和b的最近公共祖先是谁。

Output

输出K行,第i行表示第i个查询的最近公共祖先是谁。

Sample Input

16 1
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 11
6 12
16 7

Sample Output

4

HINT

30%数据 N<=20,K<=5。小数据,方便调试

50%数据 N<=1000,K<=1000。中数据,暴力可过

100%数据 1 < N <= 105,1 <= K <= 105。大数据,请使用树上倍增、LCA转RMQ&ST、离线Tarjan、树链剖分求LCA

版本1:不带启发式合并 O(2*n+nlogn)

#include<stdio.h>
int n,t;
int head[100001];
int next[200001];
int to[200001];
int ask_head[100001];
int ask_next[200001];
int ask_to[200001];
int fa[100001];
int ans[100001];
bool vis[100001];
bool is[100001];
int idx,idx2,all_fa;
int find(int p)
{
    if(fa[p]==p)
        return p;
    fa[p]=find(fa[p]);
    return fa[p];
}
void merge(int a,int b)
{
    int fa_a=find(a);
    int fa_b=find(b);
    if(fa_a==fa_b)
        return;
    fa[fa_b]=fa_a;
}
void dfs(int from,int p)
{
    for(int i=head[p];i;i=next[i])
        if(to[i]!=from)
            dfs(p,to[i]);
    for(int i=ask_head[p];i;i=ask_next[i])
        if(vis[ask_to[i]])
            ans[(i+1)/2]=find(ask_to[i]);
    merge(from,p);
    vis[p]=true;
}
int main()
{
    scanf("%d%d",&n,&t);
    for(int i=1;i<=n;i++)
        fa[i]=i;
    for(int i=1;i<n;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        next[++idx]=head[a];
        head[a]=idx;
        to[idx]=b;
        is[b]=true; 
    }
    for(int i=1;i<=n;i++)
        if(!is[i])
            all_fa=i;
    for(int i=1;i<=t;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        if(a==b)
            ans[i]=a;
        ask_next[++idx2]=ask_head[a];
        ask_head[a]=idx2;
        ask_to[idx2]=b;
        ask_next[++idx2]=ask_head[b];
        ask_head[b]=idx2;
        ask_to[idx2]=a;
    }
    dfs(0,all_fa);
    for(int i=1;i<=t;i++)
        printf("%d\n",ans[i]);
}
版本2:带启发式合并 O(2*n+α*n)
#include<stdio.h>
int n,t;
int head[100001];
int next[200001];
int to[200001];
int ask_head[100001];
int ask_next[200001];
int ask_to[200001];
int fa[100001];
int s[100001];
int ans[100001];
int rel_fa[100001];
bool vis[100001];
bool is[100001];
int idx,idx2,all_fa;
int find(int p)
{
	if(fa[p]==p)
		return p;
	fa[p]=find(fa[p]);
	return fa[p];
}
void merge(int a,int b)
{
	int fa_a=find(a);
	int fa_b=find(b);
	if(fa_a==fa_b)
		return;
	if(s[fa_a]>s[fa_b])
		s[fa_a]+=s[fa_b],fa[fa_b]=fa_a,rel_fa[fa_a]=a;
	else
		s[fa_b]+=s[fa_a],fa[fa_a]=fa_b,rel_fa[fa_b]=a;
}
void dfs(int from,int p)
{
	for(int i=head[p];i;i=next[i])
		if(to[i]!=from)
			dfs(p,to[i]);
	vis[p]=true;
	for(int i=ask_head[p];i;i=ask_next[i])
		if(vis[ask_to[i]])
			ans[(i+1)/2]=rel_fa[find(ask_to[i])];
	merge(from,p);
}
int main()
{
	scanf("%d%d",&n,&t);
	for(int i=1;i<=n;i++)
		rel_fa[i]=i,fa[i]=i,s[i]=1;
	for(int i=1;i<n;i++)
	{
		int a,b;
		scanf("%d%d",&a,&b);
		next[++idx]=head[a];
		head[a]=idx;
		to[idx]=b;
		is[b]=true;  
	}
	for(int i=1;i<=n;i++)
		if(!is[i])
			all_fa=i;
	for(int i=1;i<=t;i++)
	{
		int a,b;
		scanf("%d%d",&a,&b);
		ask_next[++idx2]=ask_head[a];
		ask_head[a]=idx2;
		ask_to[idx2]=b;
		ask_next[++idx2]=ask_head[b];
		ask_head[b]=idx2;
		ask_to[idx2]=a;
	}
	dfs(0,all_fa);
	for(int i=1;i<=t;i++)
		printf("%d\n",ans[i]);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值