深度学习
文章平均质量分 94
深度学习
这也是计划的一部分
这个作者很懒,什么都没留下…
展开
-
OpenCV:使用traincascade训练分类器完成图像识别任务
通过爬虫收集图片素材完成正负例样本的采集,通过灰度图处理与图片尺寸的裁剪完成图像处理,而后使用opencv的traincascade对图片进行训练,获取图像模型,完成图片分类器的训练。原创 2023-01-05 09:32:19 · 2779 阅读 · 2 评论 -
深度学习:基础概念陈述及P-R曲线绘制案例(Python)
对深度学习与机器学习概念的详细陈述,包括多案例与其他学科的概念对比;如何划分训练集与测试集及各部分的作用,进行模型训练后如何进行模型的评价。数据集的数学表示及数据集拆分方法,如留出法,K折交叉验证,网格搜索等;而后介绍了分类问题及其性能度量指标方法,回归问题及其性能度量指标方法,利用Iris数据集在python sklearn绘制P-R曲线,进行模型评价。原创 2022-10-16 10:55:10 · 2449 阅读 · 0 评论 -
深度学习:常用熵概述及熵值计算
熵是表示分子状态混乱程度的物理量,此时用来描述信源的不确定性的大小,由美国数学家香农提出,经常使用的熵概念有下列几种:信息熵、交叉熵、相对熵、条件熵 、互信息等,分别陈述其概念及计算方式。原创 2022-10-13 13:34:16 · 5791 阅读 · 0 评论 -
深度学习:OpenCV基础方法总结及示例
现在说的机器视觉(Machine Vision)一般指的是计算机视觉(Computer Vision),简单来说就是研究如何使得机器看懂东西,利用摄像机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像,当前两者已不存在较大区别。 首先在很多文献中,计算机视觉与机器视觉是不加区分的,但其实这两个术语既有区别又有联系的。原创 2022-10-11 18:42:05 · 2070 阅读 · 0 评论