完全平方数之和(C++)[尺取法]

题目:

Description

给你一个数字N 问可否分解成若干个连续数字的平方和。

Format

Input

给出数字N,1<=N<=1e14

Output

第一行输出有多少种拆分方案 接下来若干行 每行首先给出可分解成几个数字的平方和,然后从小到大输出这些数字

Samples

输入数据 1

2030

Copy

输出数据 1

2
4 21 22 23 24
3 25 26 27

Copy

Limitation

1s, 1024KiB for each test case.

思路:

这道题实在恶心用暴力绝对TLE,so,可以用尺取法来做;

(PS:记得做这道题的时候,我们的教练竟然出了40多个测试数据。。。实在恶心)

什么是尺取法???

尺取法:顾名思义,像尺子一样取一段。尺取法通常是对数组保存一对下标,即所选取的区间的左右端点,然后根据实际情况不断地推进区间左右端点以得出答案。之所以需要掌握这个技巧,是因为尺取法比直接暴力枚举区间效率高很多,尤其是数据量大的

时候,所以尺取法是一种高效的枚举区间的方法,一般用于求取有一定限制的区间个数或最短的区间等等。当然任何技巧都存在其不足的地方,有些情况下尺取法不可行,无法得出正确答案。

奉上代码:

#include<bits/stdc++.h>
using namespace std;
long long n,ans;
long long  a[512],b[512];

int main() {

	cin>>n;
    long long i=1,j=1,sum=0;//左、右指针,和 
    while(i<=j&&j<=sqrt(n))//优化,j<=根号n 
    {
    	//尺取法 
    	if(sum<n)sum+=j*j,j++; //如果和小于n,右移右指针 
    	if(sum>n)sum-=i*i,i++;//如果和大于n,右移左指针 
    	if(sum==n)
    	{
    		ans++;
    		a[ans]=i;
    		b[ans]=j-1;
    		sum=sum-i*i;//划重点!!!右移左指针,没有这一步你会卡疯去 
    		i++;
    		
		}
		
	}
	cout<<ans<<endl;
    for(int i=1;i<=ans;i++)
    {
    	cout<<b[i]-a[i]+1<<" ";
    	for(int j=a[i];j<=b[i];j++)
    	{
    		cout<<j<<" ";
		}
		cout<<endl;
	}
/*
          __
         |  |
         |  |
      ___|  |___
     |___    ___|
         |  |
         |  | 
         |  |
         |__|   哈雷路亚,愿世间没有bug~~ 

*/
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值