医学图像分割
文章平均质量分 80
别再摆烂了,摆烂没有未来
这个作者很懒,什么都没留下…
展开
-
DS-UNeXt
现在基于U型结构的卷积神经网络广泛应用于医学图像分割任务中。由于卷积运算的固有局部性,基于cnn的方法很难使用swing - unet学习和。然而,我们发现UNet和swing - UNet在小目标上的有不好的分割性能。针对这一问题,本文提出了一种深度可分的。DS-UNeXt网络有更大的接受域来提取特征,这有助于提高多尺度医疗分割的性能。在DSUNeXt中,提出了并行深度可分空间池化**(PDSP)多个并行深度可分离卷积组成**,增强了高级语义特征。原创 2022-11-27 11:46:43 · 847 阅读 · 3 评论 -
TransFuse论文
基于CNN的方法在建模远程关系是存在局限性,现有的方法为了建模远程关系的手段是加深编码器结构通过更多的下采样操作来达到一个更大感受野,但是这样会造成网络的冗余并且会对是局部信息。所以需要一个更好的方法在可以有效就建模全局信息的同时维持底层的细节信息。文中提出,一个并行分支的架构TrasnFuse,他以并行的方式融合和CNN实现了一个浅层的网络架构来建模全局关系和底层细节。通过新提出的BiFuseion模块来融合Transformer分支和CNN分支。原创 2022-11-25 14:30:17 · 1205 阅读 · 0 评论