CNN中的Inductive bias(归纳偏置)

本文探讨了卷积神经网络(CNN)中的归纳偏置,包括局部性和平移等变性,这两种特性如何影响模型的复杂度和泛化能力。然而,CNN在处理全局信息时受限,而Transformer虽能建模全局信息,但缺乏类似CNN的先验知识,需要大量数据来学习。因此,在小数据集上,CNN通常表现优于Transformer,而Transformer则需要更大的数据集进行预训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

归纳偏置其实就是一种先验知识,一种提前做好的假设。

在CNN中的归纳偏置一般包括两类:①locality(局部性)和②translation equivariance(平移等变性)

①  locality:假设相同的区域会有相同的特征,靠得越近的东西相关性能也就越强。局部性可以控制模型的复杂度。

②translation equivariance:由于卷积核是一样的所以不管图片中的物体移动到哪里,只要是同样的输入进来遇到同样的卷积核,那么输出就是一样的。利用平移等变形可以很好的提高模型的泛化能力。

总结:但是使用基于CNN的方法还是存在感受野有限的问题,不能很好的建模长远的依赖关系(全局信息),而基于transformer的方法可以很好的建模全局信息但是transformer反而缺乏类似于CNN的归纳偏置,这些先验信息必须通过大量的数据来进行学习,所以小的数据在CNN上取得的效果一般优于基于transformer的方法。训练基于CNN的方法通常只需要一个较小的数据集,而训练基于transformer的方法一般需要再大的数据集上进行预训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值