自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 资源 (1)
  • 收藏
  • 关注

原创 AI伦理建设

智驾也一样,一方面人会慢慢习惯后智驾带来的伤亡,另一方面智驾自身也会进化,还包括对智驾的一些交通规则变革、伦理约束,也会极大程度的降低伤亡概率。在不允许伤人的红线之下,那就只能放弃,因为你不主动撞人,但是你无法控制人不会主动往你上面撞呀。但是,在生命神圣不可侵犯之下,也会让你在多起事故之后,把你给生吞活剥了。构建人与人之间的伦理,我们用了数以千年,而且还在不断完善中。但是,在便捷性面前,终于还是选择了有伤亡的代步工具。没有交通工具之前,大家都徒步,伤亡是最小的。有了马车后,会冲撞人,伤亡就开始出现。

2026-01-28 11:16:56 113

原创 【数据积木·数据体系篇】可复用、标准化与价值实现的系统工程

本文通过木质积木的类比,阐述了数据体系建设的核心逻辑。数据应像标准积木一样具备可复用性,通过标准化实现灵活组合。这种"一体两翼"架构将数据加工为通用构件,支持多场景调用。可复用性带来三大价值:降低重复开发成本、统一业务口径、持续累积数据资产。标准化是实现的工程基础,包含模型、口径、流程和管理四个维度。最终形成效率提升与资产增值的良性循环,使数据从成本中心转变为驱动企业创新的战略资产。

2026-01-28 11:09:08 778

原创 下一代手机猜想

下一代革命性的手机,是碳基生命与硅基生命的融合。我们不能用现在的思维来定义未来的逻辑。什么设备呀,屏幕呀,APP呀的。有点马斯克脑机的意思。

2026-01-27 14:34:39 252

原创 【数据积木·架构篇】数据积木化:一体两翼架构综述

本文提出"数据积木"理念,构建"一体两翼"数据管理架构。"一体"指数据生产流水线,包括四层:汇集层(原始数据)、归集层(标准化)、聚集层(可复用资产)和市集层(应用交付)。"两翼"分别是数据治理(标准制定)和数据开发(标准执行),确保数据质量和高效加工。该架构借鉴积木制造流程,将数据从原材料加工为可灵活组合的标准化组件,使数据成为可复用、可持续增值的企业战略资产。

2026-01-27 14:30:27 1068

原创 【数据积木·引言篇】数据积木化:重构企业数据管理的底层逻辑

摘要:丹麦乐高通过标准化积木块生产模式,实现了敏捷响应市场、成本优化和创新民主化,与传统玩具成品制造形成鲜明对比。当前企业数据开发普遍存在"成品城堡"困境:定制化报表开发效率低下、数据口径混乱。数据积木思维提出将数据治理为可复用的标准化组件,如同乐高积木般自由组合。这种模式能提升响应速度、降低维护成本,并赋能业务人员自主分析。实现这一转型需要打破"业务特殊论"等认知误区,将数据团队角色从需求响应者转变为资产架构师。数据积木不仅是技术升级,更是组织认知的革命。

2026-01-12 20:28:04 774

原创 随感-数据中台

而留在DS里面都数据,如同一个巨大的沼泽,沼泽有水有泥有草,但是却没法直接利用这些水、泥、草。ODS再往后,根本走不动了,因为ODS的数据汇集是纯IT技术活,而后续则就是由业务驱动的。他又拿不出可用的数据,虽然他实现了数据统一存储,却没有标准,无法直接使用。你说ODS没有数据吗?他是有数据的,而且所有数据都有,表面看消除了数据孤岛;,还美其名曰数据入湖,消除了数据孤岛,更有恬不知耻的说我们实现了。数据中台的破局之道在于如何让中台的数据高效的被业务端用起来。了,IT不懂业务,自然就无法自行展开后续的。

2026-01-11 20:32:54 140

原创 SQL优化三板斧:精简之道、驱动为王、集合为本

本文记录了2016年一次SQL优化实践。面对一个347行、执行耗时4分多钟的复杂SQL,作者通过三阶段优化:首先精简重复子查询和冗余表关联;其次分析执行计划,优化视图访问方式;最后重构查询结构,将大查询拆分为三个子查询结果集关联。最终将查询时间从4分钟降至3.5秒,钻取时间从14分钟降至10秒以内。文章提炼出SQL优化的三个核心原则:精简之道(消除冗余)、驱动为王(小结果集驱动)、集合为本(合理组织数据集合)。这次优化历时两天,展示了处理复杂SQL性能问题的系统方法。

2026-01-11 20:32:01 866

原创 与AI高效对话,你只差这七个字:“我是谁+我想干什么?”

掌握一个简单公式,告别无效提问,让AI从“答非所问”变成“得力助手”。每次与AI对话,你是否也有这样的困惑:明明问得挺清楚,得到的答案却总差那么点意思?问题或许不在AI,而在一个我们从未意识到的关键差异——想象一下:去医院时,医生默认知道你是;请教老师时,老师清楚你是。这些“默认知道”的背景信息,构成了有效沟通的基础。但AI不同。每一次对话,你面对的都是一片。它不知道你的年龄、职业、需求场景,甚至不知道你提问时是站着还是坐着。

2026-01-08 09:16:43 354

原创 一次非典型SQL优化:如何通过业务逻辑优化另辟蹊径?

本文记录了一个SQL性能优化案例的全过程。开发人员反馈10个类似功能的SQL查询总耗时超过120秒阈值,这些查询用于检查当前表和历史表的数据重复性。优化过程经历了四个阶段:1)执行计划分析发现索引使用合理;2)SQL改写使性能提升一倍但仍不达标;3)考虑并行执行方案被业务需求否决;4)最终通过深入理解业务逻辑,发现可以增加时间戳字段实现增量检查,从根本上解决问题。案例展示了SQL优化的完整路径:从执行计划调整、SQL改写,到技术方案优化,最终回归业务逻辑优化。

2026-01-08 09:10:50 751

原创 传统搜索与AI创作

比如投资分析师和城市规划师,他们对分析2025年某城市人口分布与公交站点匹配度,虽然核心数据一致,但是维度、方向、结论导向是不同的。”远比“分析2025年某城市人口分布与公交站点匹配度”要精确很多,更能降低大模型幻觉。这一点要明确告诉给大模型,而且你的需求越明确,大模型的理解就越精确。如果还停留在搜索引擎阶段是关键词的惯性,那注定要被大模型的幻觉“戏耍”为了更好的精确理解意图,你最好还要告诉大模型你的角色。因为不同角色,对同一个目标,所要求的结果是不一样的。输入的关键词越简练,匹配的效果自然越好。

2026-01-05 09:24:27 159

原创 一次耐人寻味的SQL优化:除了SQL改写,还要考虑什么?

本文记录了一个SQL性能优化的典型案例。面对"编辑日志查询"功能因数据量剧增导致的性能问题(从100万/日增长到6000万),作者通过多轮优化:先是移除自定义函数提升性能,随后发现数据量过大(单次查询500万+结果)是根本原因。解决方案包括表分区、强制时间条件、创建联合索引等,但遭遇跨部门协作难题。深入分析发现模型设计缺陷导致查询效率低下,提出拆分字段方案又面临版本迭代压力。最终通过架构调整解决了问题,但也引发了对模型设计前瞻性、日志查询意义等深层思考。整个过程展现了技术优化与组织协调的

2026-01-05 09:03:13 1024

原创 【ChatBI祛魅(3)】ChatBI 的“BI”之困:Text-to-SQL何以成为“皇帝的新码”?

前文揭示了ChatBI在“Chat”环节的溃败。但即便AI听懂了指令,其核心引擎——Text-to-SQL——真能胜任吗?在简单世界里,它像把万能钥匙;可一旦面对企业数据迷宫中交织的业务逻辑,它便瞬间失灵,生成的可能只是无法运行的“皇帝的新码”。本文将为这最后一环祛魅,剖析智能取数何以在复杂现实前撞上高墙。

2025-12-31 09:43:50 1123

原创 【ChatBI祛魅(2)】ChatBI 的“Chat“幻灭:当AI理解撞上业务意图的铜墙铁壁

摘要:ChatBI的对话功能存在根本缺陷,导致数据准确性危机。问题根源在于三重鸿沟:1)意图鸿沟 - AI缺乏业务场景理解,导致误读用户需求;2)交互鸿沟 - 将双向需求确认简化为单向猜测;3)确定性鸿沟 - 分析结果不可复现。当前AI无法真正理解业务语境中的隐含信息,所谓的"智能对话"只是产生误解的独白。在解决这些认知层级问题前,ChatBI的便捷性是以牺牲商业分析准确性为代价的。

2025-12-31 09:39:58 742

原创 传统BI与ChatBI的同与不同

三、核心关系总结

2025-12-25 13:49:57 148

原创 【ChatBI祛魅(1)】ChatBI热潮下的冷思考:数据准确性为何成为“阿喀琉斯之踵”?

摘要:ChatBI作为商业智能领域的新趋势,其数据准确性成为关键瓶颈。本文指出,尽管厂商常宣称90%以上的准确率,但实际应用中存在三大核心挑战:自然语言理解歧义导致指标口径混乱、大模型输出结果不稳定难以复现、分析过程黑箱化丧失可解释性。这些根本问题使ChatBI在真实业务场景中面临"开盲盒"式的决策风险。文章强调,准确性是BI不可妥协的生命线,若无法解决这一"阿喀琉斯之踵",ChatBI将难以从概念炒作阶段跨越到实际价值创造阶段。

2025-12-25 11:25:58 611

原创 致CIO:如何让您的数据团队,从“成本中心”变身“业务增长引擎”?

本文指出,IT部门深陷“投入增长、价值模糊”的困境,根源在于数据管理仍停留在被动“项目交付”模式。为此,文章提出以 “数据资产化”为支点,通过建设开发治理与可视化两大赋能平台,并重塑架构师、开发工程师、资产运营专员三类核心角色,推动数据职能从“成本中心”系统性转型为驱动业务的“价值引擎”,为CIO/CTO提供清晰的转型路径与实施框架。

2025-12-22 18:10:41 707

原创 “知数善用”漫画番外(下):从“沼泽困局”到“产品超市”,业务妹子与数据哥的协同共生之路

这是「知数善用」漫画番外的圆满结局篇。业务小智与数据大程在经历信任危机后,通过“知数善用”理念实现觉醒,共同将数据封装成可复用的“产品”,上线了清晰的“数据产品超市”,并建立了“使用-反馈-迭代”的协同闭环。故事生动展现了双方如何从互相抱怨的“囚徒”,转变为共同创造价值的“伙伴”,最终让数据真正成为驱动业务的敏捷力量。

2025-12-17 18:15:10 313

原创 “知数善用”漫画番外(上):从“完美合作”到“沼泽困局”,业务妹子与数据哥怎么了?

这是「知数善用」组织篇的轻松番外。我们用一部真实的“职场纪录片漫画”,讲述了业务妹子小智与数据哥大程,如何从“黄金搭档”一步步深陷需求爆炸、重复开发、数据矛盾的“数据沼泽”。故事还原了无数企业业务与IT从合作到互相抱怨的经典困局,为后续的“突围”与“共生”埋下伏笔。

2025-12-16 15:29:24 280

原创 知数善用之组织篇:如何驱动业务与数据的“双向进化”,填平价值鸿沟?

我们建了数据中台,买了BI工具,为什么业务部门还是说“用不起来”?问题的核心,并非技术不足,而在于组织能力与“知数善用”新机制的根本性错配。本文将为您系统剖析三大组织错配,并给出驱动业务与数据团队“双向进化”的完整转型路径。

2025-12-12 11:21:25 1209

原创 从“知人善用”到“知数善用”:破解企业数据价值困局的管理哲学

过去四十年,我们学会了‘知人善用’,成就了组织能力;未来十年,我们必须学会‘知数善用’,这将定义数字时代的核心竞争力。

2025-12-10 16:03:37 695

原创 主数据治理的“普高”与“职高”之路:别再混淆MDM与数据中台

企业常混淆MDM与数据中台中的主数据治理。本文以“普高vs职高”为喻,系统解构二者差异:MDM重全域管控与流程固化,目标是“统一”;数据中台重场景化集成与敏捷服务,目标是“好用”。文章通过两种典型场景剖析其协同关系,并为企业提供“奠基长远”与“敏捷先行”的务实建设路径,强调从源头规划协同,避免重复治理与技术负债

2025-12-08 09:20:59 247

原创 AI的“炼油厂”革命:没有数据治理,所有模型都是空中楼阁

针对企业AI项目高失败率的普遍痛点,提出了一个独创的 “价值协同三角”模型,深刻论证了数据治理是AI成功不可逾越的前置条件,并为技术管理者提供了清晰的行动框架。

2025-12-05 16:50:57 817

原创 做成做大做强

需求+技术=>做成只要有具体的需求,外加匹配到一定的技术,做成一个项目是没问题的。这无关乎投入多少?也无关乎由什么人来做?比如总是能听到这样的段子:一个国家级的项目,由一家世界强的企业中标,最后真正code的是高校的在校学生。投入+人员=>做大持续的成本和时间投入,外加一个可靠的团队,就能将一个项目级需求做成一个产品。这也是当前很多信息化产品的“涅槃”之路。但是理想很丰满,而现实却很骨感。市面上,但凡有点想法的外包公司,都是想着从大量的项目中沉淀知识,打磨属于自己的具有竞争力的产品,

2020-07-02 17:24:43 176

原创 数据库的发展在经历一个大变革时代

数据库的发展在经历一个大变革时代,RDBMS世界的一个显著的特点是:我们什么都能搞定,只要是关系型的数据存储和处理,无论是ERP还是进销存,无论是OA还是HRMS。各个数据库厂家在这一点上是一样的,数据库产品的差异性不大。所以才形成寡头效应,通杀嘛。而现在呢?随着对数据的探索不再局限于关系型、结构化,数据探索向纵深推进,每一次推进,都会发现现存的数据库技术无法满足需求,而得益于开源技术的支撑,与其委曲求全削足适履的向现有数据库靠拢,还不如坐地起楼自成一家。因为专注于单个细分的领域,也不需要太多的顾虑,只

2020-06-17 17:37:44 194

金山词霸2007如何在Acrobat Reader取词

金山词霸2007如何在Acrobat Reader取词

2013-03-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除