做成做大做强

需求+技术=>做成

只要有具体的需求,外加匹配到一定的技术,做成一个项目是没问题的。这无关乎投入多少?也无关乎由什么人来做?比如总是能听到这样的段子:一个国家级的项目,由一家世界强的企业中标,最后真正code的是高校的在校学生。

投入+人员=>做大

持续的成本和时间投入,外加一个可靠的团队,就能将一个项目级需求做成一个产品。这也是当前很多信息化产品的“涅槃”之路。但是理想很丰满,而现实却很骨感。市面上,但凡有点想法的外包公司,都是想着从大量的项目中沉淀知识,打磨属于自己的具有竞争力的产品,都纷纷布局所在领域的产品建设,想着摇身一变,华丽转身。但是,又有几个外包公司体验了丑小鸭变美天鹅的美丽童话了呢?

底座+工匠=>做强

做大尚且寥寥,做强谈何容易?如果说,做成靠的是运气,做大拼的是实力,那么做强就需要用心:用心专研、用心坚持、用心感悟。专研的是底座,夯实基石,唯有坚实厚重的基座,才能撑起摩天大楼,地势坤,君子厚德载物就是这个意思。而坚持就是工匠精神,最求极致,质量的极致,效率的极致。天行健,君子自强不息说的就是这个。除此之外,还需要去感悟,这个感悟就是那百分之一的灵感。专研、坚持、感悟,三者缺一不可。所以,很多时候很惊讶:光刻机为何在荷兰?诺基亚为何在芬兰?

 

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值