爬虫框架Scrapy的讲解

一、Scrapy的定义

Scrapy是适用于Python的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。【是纯python实现的框架】

二、Scrapy框架的安装

pip install scrapy(有可能还需要安装其他的依赖库等【我安装时直接输入此命令进行安装的,中间有报错,但是还是重复此命令操作,最后安装好了】)

三、Scrapy框架的整体架构和组成

官方的Scrapy的架构图如下:
在这里插入图片描述
其中,图中绿色的是数据的流向。

1)架构说明:

Scrapy Engine(引擎):负责SpidersItemPipelineDownloaderSchedule中间的通讯,信号、数据传递等【处理整个系统的数据流处理,出发事物,框架的核心】。
Scheduler(调度器):简单说就是队列。它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,加入队列,在引擎再次请求时将请求提供给引擎。
Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spiders来处理。
Spiders(爬虫解析器):【编写xpath、正则表达式等解析策略,用于分析和处理数据】它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据;如果有新链接的请求(如下一页),将需要跟进的URL提交给引擎,再次进入Scheduler(调度器)
Item Pipeline(管道):它负责处理Spiders中获取到的Item,并进行后期处理(详细分析、过滤、存储等)的地方。
Downloader Middlewares(下载中间件):一个可以自定义扩展下载功能的组件【封装代理、http头部隐藏等】。
Spider Middlewares(Spider中间件):一个可以自定义扩展和操作引擎和Spiders中间通信的功能组件。

2)结合下表概括了框架中各组件的作用:

在这里插入图片描述

3)梳理一下scrapy框架的整体执行流程:

1.Spiders的 yeild 将 request 发送给Engine【编写入口url(即需要请求的网站)】
2.Enginerequest 不做任何处理,将 request 发送给Scheduler,让它排序、入队列
3.Scheduler排好队列后,将新的 request 请求发送给Engine
4.Engine拿到新的 request 后,发送给Downloader让它下载
5.Downloader下载好后(即获取到response)之后,再发送回Engine
6.Engine获取到response之后,返回给SpidersSpiders的 parse() 方法对获取到的response进行处理,解析出 “items” 或者 "requests"
7.Spiders将解析出来的 “items” 或者 “requests” 发送给Engine
8.Engine获取到 “items” 或者 “requests” ,将 “items” 发送给ItemPipeline;将 “requests” 发送给Scheduler
9.ItemPipeline收到 “items” 后,对数据进行后期处理(详细分析、过滤、存储等)
10.Scheduler收到 “requests” 后,对请求再进行排序、入队,再发送给Downloader让它下载

scrapy框架是异步开发的,各个组件各司其职。
(ps:只有Scheduler中不存在 request 时,程序才停止;如果Downloader没有下载成功,则会返回给Engine,让Scheduler重新排列,再将新的 request 发送给Downloader进行下载处理)

四、Scrapy框架的使用

1️⃣创建项目scrapy startproject xxx

例如:scrapy startproject tubatu_scrapy_project

2️⃣查看项目中的文件
①scrapy.cfg文件【项目的配置文件】,包含指定当前项目配置的路径(settings)、以及部署信息(deploy)在这里插入图片描述
②项目文件下的items.py文件【定义数据结构】,即想要抓取哪些字段(例如名称、url等)
在这里插入图片描述
③项目文件下的pipelines.py文件【项目管道文件,又称数据处理管道文件】,用于编写数据的存储、清洗等逻辑。如将数据存储到json文件或mongo文件,就可以在此编写逻辑
在这里插入图片描述
④项目文件下的settings.py文件【项目设置文件】,可以定义项目的全局设置,一般用到哪个选项就开启并设置即可。(其中是否遵循ROBOTS协议这一项,一般设置为False)
⑤项目文件下的middlewares.py文件【定义了两个中间类的规则编写】,可以设置http的头部信息,设置代理等
在这里插入图片描述
⑥项目文件下的spiders文件夹【包含每个爬虫项目的实现】,解析规则就会写在此目录中,在spiders目录下编写爬虫逻辑(爬虫解析器)即可。而我们可以使用命令生成spider模板来直接编写爬虫逻辑,如下一步骤👇

3️⃣通过模板生成spider文件
cd到项目中的spiders目录,输入命令:scrapy genspider xxx(爬虫名) xxx.com (爬取网址的目标域名)

例如:scrapy genspider tubatu xiaoguotu.to8to.com/tuce/

创建后如下图所示:
在这里插入图片描述

该spider文件,继承自scrapy.Spider基类,且默认使用start_request来发送请求,而start_request方法会调用start_urls中的url,它所返回的response会默认使用parse()函数进行处理。
其中,
name就是爬虫项目名称;
allowed_domains就是指定允许爬取的域名;
start_urls就是指定从哪个url地址开始抓取;
parse()函数就是默认的解析方法

4️⃣运行项目
当编写好爬虫文件后,执行爬虫开始抓取数据时,那么需要在命令行中输入:scrapy crawl xxx(爬虫项目名称),才能运行项目文件

例如:scrapy crawl tubatu

!!!为了不每次都在命令行中输入该命令来运行项目,可以改用下面这种方法。
在项目文件下创建main.py文件,在里面编辑以下命令:

from scrapy import cmdline
cmdline.execute("scrapy crawl xxx".split())		# 其中xxx表示爬虫项目名称

如图所示:
在这里插入图片描述

五、其他要点

1)scrapy中使用xpath的extract()extract_first()的区别

scrapy爬虫框架中,因为response就是一个Html对象,所以response后面可以直接使用xpath方法,而不需要去导入lxml库等。
在使用scrapy爬虫的时候,我们常常使用xpath来获取html标签。但是我们经常会用到提取的方法,有两种提取的方法,分别是:

extract():这个方法返回的是一个数组list,里面包含了多个string,如果只有一个string,则返回[‘ABC’]这样的形式。

extract_first():这个方法返回的是一个string字符串,是list数组里面的第一个字符串。

2)scrapy中 yield 的使用详解
如下图所示代码(一共使用3次yield)【该代码是通过scrapy框架来爬小说网站】:

  • 第一次:
    》这里我们在循环里爬取小说详细页面的链接,并通过 yield 来发起异步请求,并且还将函数 getInfo 作为回调函数来从响应中提取所需要的数据(注意,该回调函数只写函数的名称即可)❗
  • 第二次:
    》这里是在爬取完一页的信息后,我们在当前页面获取到了下一页的链接,然后通过 yield 发起异步请求,并且将 parse 自己作为回调函数来处理下一页的响应(注意,该回调函数只写函数的名称即可)❗
  • 第三次:
    》这里我们通过 yield 返回的不是 Request对象,而是一个 TextInfoItem对象
    scrapy框架 获得这个对象之后,会将这个对象传递给 pipelines.py来做进一步处理。我们可以在 pipelines.py里将传递过来的 scrapy.Item 对象保存到数据库里去❗

总结:
scrapy框架 会根据 yield 返回的实例类型来执行不同的操作,
》如果是 scrapy.Request 对象scrapy框架 会去获得该对象指向的链接并在请求完成后调用该对象的回调函数。
》如果是 scrapy.Item 对象scrapy框架 会将这个对象传递给 pipelines.py做进一步处理。
【该yield的使用讲解,参考该链接:https://www.jianshu.com/p/7c1a084853d8】
在这里插入图片描述

发布了20 篇原创文章 · 获赞 2 · 访问量 4821
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览