比赛链接:“AI Earth”人工智能创新挑战赛
1. 数据
数据包括CMIP5/6模式的历史模拟数据和美国SODA模式重建的近100多年历史观测同化数据。每个样本包含以下气象及时空变量:海表温度异常(SST),热含量异常(T300),纬向风异常(Ua),经向风异常(Va),数据维度为(year,month,lat,lon)。对于训练数据提供对应月份的Nino3.4 index标签数据。
2.MLP模型
多层感知机(MLP)是一种前向结构的人工神经网络,最典型的MLP包括包括三层:输入层、隐层和输出层,MLP神经网络不同层之间是全连接的(全连接的意思就是:上一层的任何一个神经元与下一层的所有神经元都有连接)。
3.代码
def build_model(train_feat, test_feat): #allfeatures,
inp = Input(shape=(len(train_feat)))
x = Dense(1024, activation='relu')(inp)
x = Dropout(0.25)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.25)(x)
output = Dense(len(test_feat), activation='linear')(x)
model = Model(inputs=inp, outputs=output)
adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99)
model.compile(optimizer=adam, loss=RMSE)
return model