1.背景
来自16年的一篇Google的论文《Wide & Deep Learning for Recommender Systems》,文章将传统的LR和DNN组合构成一个wide&deep模型(并行结构),既保留了LR的拟合能力,又具有DNN的泛化能力,并且不需要单独训练模型(join),可以方便模型的迭代。
问题的提出:
线性模型LR泛化能力较弱,且需要做好特征工程,无法学习到训练集中未出现的组合特征。
FM或DNN通过学习embedding vector虽然可以学习到训练集中未出现的组合特征,但是容易过度泛化。
2.结构
Wide部分就是基础的线性模型,表示为y=WX+b。X特征部分包括基础特征和交叉特征。交叉特征在wide部分很重要,可以捕捉到特征间的交互,起到添加非线性的作用。
Deep部分就是个前馈神经网络(a feed-forward neural network),可以简单理解为Embedding+MLP这种普遍的结构。
网络的训练方式采用的是联合训练,并不是单独的训练两部分网络,然后在预测的时候在一起使用,而是直接在训练阶段就同时训