【学习笔记】深度模型Wide&Deep

Wide&Deep模型学习

1.背景

来自16年的一篇Google的论文《Wide & Deep Learning for Recommender Systems》,文章将传统的LR和DNN组合构成一个wide&deep模型(并行结构),既保留了LR的拟合能力,又具有DNN的泛化能力,并且不需要单独训练模型(join),可以方便模型的迭代。
问题的提出:
线性模型LR泛化能力较弱,且需要做好特征工程,无法学习到训练集中未出现的组合特征。
FM或DNN通过学习embedding vector虽然可以学习到训练集中未出现的组合特征,但是容易过度泛化。

2.结构

在这里插入图片描述
Wide部分就是基础的线性模型,表示为y=WX+b。X特征部分包括基础特征和交叉特征。交叉特征在wide部分很重要,可以捕捉到特征间的交互,起到添加非线性的作用。
Deep部分就是个前馈神经网络(a feed-forward neural network),可以简单理解为Embedding+MLP这种普遍的结构。
网络的训练方式采用的是联合训练,并不是单独的训练两部分网络,然后在预测的时候在一起使用,而是直接在训练阶段就同时训

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值