深度模型笔记02 Wide&Deep

Wide&Deep模型结合了浅层神经网络的"记忆能力"和深层神经网络的"泛化能力",广泛应用于特征丰富的场景。Wide部分处理稀疏特征,用于筛选常见模式,而Deep部分通过embedding学习特征间的深层交叉。在股票预测中,自然语言处理特征适合wide,股票关联特征适合deep。Wide使用L1 FTRL训练以过滤不重要特征,Deep则处理稠密的embedding向量。
摘要由CSDN通过智能技术生成

深度模型笔记02 Wide&Deep

更多资料参考:datawhale

1. Wide&Deep

一句话概括W&D,W&D由浅层(或单层)的wide部分神经网络和深层的deep部分多层神经网络组成,输出层采用softmax或logistics regression综合wide和deep部分的输出。
在这里插入图片描述
特点:
1.wide部分有利于增强模型的“记忆能力”,deep部分有利于增强模型的“泛化能力”。
2.wide侧记住的是历史数据中常见、高频的模式,它没有发现新模式的能力,一般输入一些高度稀疏的数据,进行模式的筛选。
3.deep侧通过embedding的方式将数据特征映射城稠密向量,让dnn学习这些特征之间的深层交叉,以增强扩展能力。

2.模型构造

# Wide&Deep 模型的wide部分及Deep部分的特征选择,应该根据实际的业务场景去确定哪些特征应该放在Wide部分,哪些特征应该放在De
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值