深度模型笔记02 Wide&Deep
更多资料参考:datawhale
1. Wide&Deep
一句话概括W&D,W&D由浅层(或单层)的wide部分神经网络和深层的deep部分多层神经网络组成,输出层采用softmax或logistics regression综合wide和deep部分的输出。
特点:
1.wide部分有利于增强模型的“记忆能力”,deep部分有利于增强模型的“泛化能力”。
2.wide侧记住的是历史数据中常见、高频的模式,它没有发现新模式的能力,一般输入一些高度稀疏的数据,进行模式的筛选。
3.deep侧通过embedding的方式将数据特征映射城稠密向量,让dnn学习这些特征之间的深层交叉,以增强扩展能力。
2.模型构造
# Wide&Deep 模型的wide部分及Deep部分的特征选择,应该根据实际的业务场景去确定哪些特征应该放在Wide部分,哪些特征应该放在De