【学习笔记】GNN - Task2

本文详细介绍了图神经网络中的消息传递范式,包括节点嵌入、PyG中的MessagePassing基类及其GCNConv子类的实现。重点讲解了GCNConv的数学定义和消息传递的五个关键步骤,以及如何利用MessagePassing基类构建图神经网络。同时,给出了基于MessagePassing的作业,要求总结运行流程并复现一层图神经网络。
摘要由CSDN通过智能技术生成

消息传递

1.消息传递(Message Passing)范式

在这里插入图片描述

  • 节点嵌入(Node Embedding)- 神经网络的生成节点表征的操作

2.MessagePassing类

Pytorch Geometric(PyG)提供了MessagePassing基类,它封装了“消息传递”的运行流程。

3.GCNConv子类

GCNConv的数学定义为 x i ( k ) = ∑ j ∈ N ( i ) ∪ i 1 deg ⁡ ( i ) ⋅ deg ⁡ ( j ) ⋅ ( Θ ⋅ x j ( k − 1 ) ) , \mathbf{x}i^{(k)} = \sum{j \in \mathcal{N}(i) \cup { i }} \frac{1}{\sqrt{\deg(i)} \cdot \sqrt{\deg(j)}} \cdot \left( \mathbf{\Theta} \cdot \mathbf{x}_j^{(k-1)} \right), xi(k)=jN(i)ideg(i) deg(j)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值