介绍
B树的目的为了硬盘快速读取数据(降低IO操作次树)而设计的一种平衡的多路查找树。目前大多数据库及文件索引,都是使用B树或变形来存储实现。
目录
- 为什么B树效率高
- B树存储
- B树缺点
为什么B树效率高
在大规模数据存储操作中,由于无法一次性加载到内存里。所以避免不了发生内外存交换。所以次数越少,效率表现也越高。
来看下面这张图:
这是个典型的b树结构,初始因子为1000,高度仅为3的b树,就可以存储1002001000的数据了。
假设要查询最后一个数据:
- 从硬盘加载根节点搜索,IO一次。
- 根据根节点的指针信息,去加载第二层的节点, IO一次。
- 重复2,IO一次。
IO只用了3次,就查询了需要的数据,所以说B树效率是非常高的。
B树的节点,在硬盘里表现为:柱面里的页(page)或盘块(block) ,如果把索引持久化到内存,只需要一次就够了。
B树的高效的前提是数据已排序。
B树结构
这是B树存储在硬盘的逻辑结构图。
其中根节点中17,35在称为关键字(key) ,实际中往往附带更多复杂类型数据。
可以看出一个节点包含 keys ChildNotePointer 2部分信息。
根据这张图介绍下b树的基础定义:
这是颗5阶B树的图,阶简写m。
1:树中每个结点最多含有m个子节点(m>=2)。
2:每个内节点至少 [ceil(m / 2)] 个子节点。 内节点即非根节点非页子节点,也可以叫中间节点。
3: 关键字key的数量 [ceil(m / 2)-1]<= n <= m-1,关键字按递增排序。
6: 每个叶节点具有相同的深度,即树的高度h,而且不包含关键字信息。
上图也可称为最小度数为3的b树,(degree) ,简写t。
t其实是上面第二条定义中 [ceil(m / 2)] 的值,即t=[ceil(m/2)], 3=ceil(5/2) 。
1:每个非根节点至少有t-1个关键字,非根内节点至少有t个子节点。 t称为度数(degree),t>=2 。
. 2:每个节点至多有2t-1关键字,每个内节点最多有2t个子节点。
3:每个叶节点具有相同的深度,即树的高度h,而且不包含关键字信息。
度和阶都是描述子节点的数量的。
算法导论译版中是用度来描述的。
数据结构与算法分析是用阶来描述,网上大多也是。
下面简单的描述实现逻辑。
搜索:从根节点搜索,找到返回,找不到递归子节点。一直搜索到叶子节点,找到返回,找不到则说明key不存在。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
//伪代码
entry BTreeSearch(node, key) {
if
(node ==
null
)
return
null
;
for
(
int
i = 0; i < node.keys.length; i++)
{
if
(node.keys[i] == key)
return
node.data[i];
}
return
BTreeSearch(ChildrenNode[i].node,key);
}
var
entry = BTreeSearch(root, my_key);
|
插入:根节点插入,不满直接插入。节点满进行分裂,再满递归分裂。
删除:查询到节点,然后进行删除操作,不满足B数节点的定义则进行节点合并。
更新:查询到子节点,更新数据。
B树缺点
从上面的得知,在查询单条数据是非常快的。但如果范围查的话,b树每次都要从根节点查询一遍。
所以在实际应用中,往往采用b树的变形,b+树来存储,只有叶子节点存储数据,每个叶子节点都指向下一个。
参考博客 http://blog.csdn.net/v_JULY_v/article/details/6530142/