八皇后问题 回溯法hdu2553

N皇后问题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 29994    Accepted Submission(s): 13085


Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。

 

Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
 

Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
 

Sample Input
1850
 

Sample Output
19210
 

Author
cgf
 

Source

2008 HZNU Programming Contest

解题思路就不说了 代码中说明主意点。。。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<vector>
#include<map>
#include<list>
#include<stack>
#include<set>
using namespace std;

int n,tot=0,a[15],b[15],row;

void dfs(int row)//递归搜索可行解,回溯法
{
	if(row==n)//当row=n时,说明每一行的皇后都不冲突,即为可行解
	{
		tot++;
		return;
	}
	else 
	{
		for(int i=0; i<n; i++)
		{
			int flag=1;
			a[row]=i; //尝试把第row行的皇后放在i列上
			for(int j=0; j<row; j++) //检验是否与前面已放好的皇后冲突
			{
				if(a[row]==a[j]||a[row]-row==a[j]-j||a[row]+row==a[j]+j)//注意点,也是理解点
				{//判断之前的列有没有放过,判断对角线的位置有没有放皇后,对角线没什么公式,自己理解。
					flag=0;
					break;//跳出最内层循环如果冲突,停止搜索,返回上一级递归回溯。回溯法高效的关键
				}
			}
			if(flag)
			{
				dfs(row+1);//往下面一行继续搜索
			}
		}
	}
}

int main()
{
	for(int i=1; i<=10; i++)//之前就是没有这一步预处理,所以TLE了 TT
	{
		tot=0;
		n=i;
		dfs(0);
		b[i]=tot;
	}
	while(~scanf("%d",&n),n)
	{
		printf("%d\n",b[n]);
	}
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yu121380/article/details/79957694
上一篇hdu1556(树状数组小地方的解释~~~)
下一篇强联通分量算法的个人详解Tarjan算法(包含缩点)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭