【动态规划】三种基本背包问题

动态规划 是对解最优化问题的一种途径 它往往是针对一种最优化问题 根据问题的不同性质 确定不同的设计方法 
因为这篇文章我想说点关于背包问题的事情 所以不再过多介绍动态规划 
背包问题 是动态规划中的一个经典题型 在联赛中也经常出现 其基本问题主要分为01 完全 多重 三种 
下面就通过程序与例题分别来说一下三种基本问题

01背包

有n件物品和容量为m的背包 给出i件物品的重量以及价值 求解让装入背包的物品重量不超过背包容量 且价值最大 
特点 这是最简单的背包问题 特点是每个物品只有一件供你选择放还是不放

对于这个问题一般有两种解法 下面分别来介绍一下

① 二维解法 
设f[i][j]表示前i件物品 总重量不超过j的最大价值 可得出状态转移方程 
f[i][j]=max{f[i-1][j-a[i]]+b[i],f[i-1][j]} 

或许到这里大家对这个方程还不是那么熟悉,我们便通过一个实例来走一遍:

物品件数n=4,背包容量m=8

物品编号1234
w(体积)
v(价值)

初始化: 
这里写图片描述 
总表: 
这里写图片描述

现在挑几个典型的说一下这个表是怎么更新的: 
点(i=2,j=3):这时有两个物品可以放入,背包容量为3,此时我们面临一个抉择,放还是不放第二件物品,我们看一下,上一状态,也就是只有一件物品或者说我们不放这件物品时的最大价值(i=1,j=3)为3,再看一下如果我们放这件物品的最大价值,(此时空间明显不足以同时放入这两件物品,我们如果放这件物品总得给它留出足够的空间吧,所以我们计算一下当给他留出足够空间时,空间还剩多少,此时背包的最大价值是多少)(i=1,j=3-3=0)为0(也就是说此时我如果想放入第二件物品的话,就得把第一件物品拿出来,拿出来后背包价值是0),再把第二件物品放进去,此时背包价值为4,我们比较一下这两个状态,如果不放第二件物品背包价值为3,放第二件物品背包价值为4,我们当然选择翻入第二件物品。 
如果这个点还是不太明白我们再试一个点,算法是一样的 
点(i=3,j=7):这时有三个物品可以放入,背包容量为7,我们面临一个抉择,放还是不放第三个物品,

这个地方我一开始有点迷,点(i=3,j=6)的时候我已经把第三个物品放进去了,那还这个点我还
看放不放他干啥,这时候不还得判断是不是得扔哪个物品吗?是不是有点傻?这时候我们的上一状
态是背包容量为j时,有两个物品可放的最大价值,可以说i相等时,每个点都是独立的,互不相
关,所以此时我们比较的是(i=2,j=7)这个点,要看的是,当有二个物品可以放入,背包容量为7
时再放入第三个物品能不能使背包的价值更大。

我们看一下,上一状态,也就是只有一件物品或者说我们不放这件物品时的最大价值(i=2,j=7)为7,再看一下如果我们放这件物品的最大价值,(此时空间明显不足以同时放入这两件物品,我们如果放这件物品总得给它留出足够的空间吧,所以我们计算一下当给他留出足够空间时,空间还剩多少,此时背包的最大价值是多少)(i=2,j=7-4=3)为4((重点理解!!!)也就是说要想放入第三个物品得给给他让出v[3]=4的容量,此时背包容量还剩3,我们可以知道,背包容量为3时背包最大价值为(i=2,j=3)=4),再把第三件物品放进去,此时背包价值为4+5=9,我们比较一下这两个状态,如果不放第三件物品背包价值为7,放第二件物品背包价值为9,我们当然选择翻入第三件物品。

代码如下

#include<iostream>
using namespace std;
int main()
{
    int m,n;
    cin>>n>>m;
    int a[50001],b[50001];
    int f[5001][5001];
    for(int i=1;i<=n;i++)cin>>a[i]>>b[i];
    for(int i=1;i<=n;i++)
    for(int j=m;j>0;j--){
        if(a[i]<=j)f[i][j]=max(f[i-1][j],f[i-1][j-a[i]]+b[i]);
        else f[i][j]=f[i-1][j];
    }
    cout<<f[n][m]<<endl; //最优解
    //COYG
}

虽然“原理”没有错 但是f数组开的太大 (一般应该5000就顶头了) 
在一些情况下 题目的数据会很大 因此f数组不开到一定程度是没有办法ac的 那么该怎么办呢 于是

②一维解法 
设f[j]表示重量不超过j公斤的最大价值 可得出状态转移方程 

fj=maxj{fj,f[j−a[i]]+b[i]}fj=maxj{fj,f[j−a[i]]+b[i]}


代码如下

 

#include<iostream>
using namespace std;
int main()
{
    int n,m;
    cin>>n>>m;
    int a[50001],b[50001];          
    for(int i=1;i<=n;i++)cin>>a[i]>>b[i];
    int f[50001]={0};
    for(int i=1;i<=n;i++){       
        for(int j=m;j>=a[i];j--)
            if(f[j-a[i]]+b[i]>f[j])f[j]=f[j-a[i]]+b[i];  
    }
    cout<<f[m]<<endl;   //最优解
    //COYG
} 

这样用一维数组代替二维数组就解决了很多问题 所以用一维数组解决01背包是很重要的

01背包的例题有:[USACO07DEC]手链Charm Bracelet(洛谷搜索 P2871) 采药(洛谷搜索 P1048) [Noip普及组2001]装箱问题(洛谷搜索 P1049)

完全背包

有n件物品和容量为m的背包 给出i件物品的重量以及价值 求解让装入背包的物品重量不超过背包容量 且价值最大 
特点 题干看似与01一样 但它的特点是每个物品可以无限选用

其实这个题也可以写二维和一维两种 但之前已经说过了二维的有一定局限 所以在此之介绍一维 
一维 
设f[j]表示重量不超过j公斤的最大价值 可得出状态转移方程 

fj=maxj{fj,f[j−a[i]]+b[i]}fj=maxj{fj,f[j−a[i]]+b[i]}


代码如下

 

#include<iostream>
using namespace std;
int main()
{
    int n,m;
    cin>>n>>m;
    int a[50001],b[50001];
    int f[50001]={0};
    for(int i=1;i<=n;i++){
        cin>>a[i]>>b[i];
    }
    for(int i=1;i<=n;i++)
    for(int j=a[i];j<=m;j++){
        if(f[j-a[i]]+b[i]>f[j])f[j]=f[j-a[i]]+b[i];
    }
    cout<<f[m]<<endl;//最优解
    //COYG
}

大家有没有感觉代码很熟悉?每错 一维完全背包的代码与一维01背包的代码只在循环上有些差别 而且状态转移方程也一样

例题可以百度搜索收益(也叫投资) 
算了好人做到底我还是ctrl+v一下题目吧 
【题目描述】收益 (POJ 2063) 
“建太空梯进入太空要1兆亿?”魔法学院的院长瞪大了眼睛。 
“这只是基础设施的费用,后期还要……”墨老师掰着手指算。 
“哎呀,现在地主也很穷啊,学院的钱批下来就这么多,你想办法用这笔钱在债券市场上获得最大收益吧。”院长皱着眉头。 
简单来说,就是你有一笔钱,你要将这笔钱去投资债券,现在有d种债券,每种债券都有一个价值和年收益,债券的价值是1000的倍数,问你如何投资在n年后的获得最大收益。 
【输入格式】 
第一个为一个整数M,表示有M组数据。 
每组数据第一行有两个整数,表示初始资金(不超过50000)和年数n。 
每组数据第二行为一个整数d(1 ≤ d≤10),表示债券种类。 
随后d行每行有两个整数,表示该债券的价值和年收益。年收益不会超过债券价值的10%。 
所有数据不超过整型取值范围。 
【输出格式】 
每组数据,输出n年后获得的最大收益。 
【输入样例】 

10000 4 

4000 400 
3000 250 
【输出样例】 
14050

贴一下我这个题的代码

#include<iostream>
#include<cstring>
using namespace std;
int main()
{
    int m,y,n,d,ans=0,a[100001],b[100001];
    int f[100001]={0}; 
    cin>>m;
    while(m--){
        cin>>y>>n;
        cin>>d;
        for(int i=1;i<=d;i++){
            cin>>a[i]>>b[i];
        }
        for(int o=1;o<=n;o++){
        for(int i=1;i<=d;i++)
        for(int j=a[i];j<=y;j++){
            f[j]=max(f[j-a[i]]+b[i],f[j]);
        }
        y+=f[y]; //每次都要累计
        memset(f,0,sizeof(f));
        }
        cout<<y<<endl;
    }
    return 0;
} //小蒟蒻代码丑
//COYG

多重背包

有n件物品和容量为m的背包 给出i件物品的重量以及价值 还有数量 求解让装入背包的物品重量不超过背包容量 且价值最大 
特点 它与完全背包有类似点 特点是每个物品都有了一定的数量

状态转移方程为: 

f[j]=max{f[j],f[j−k∗a[i]]+k∗b[i]}f[j]=max{f[j],f[j−k∗a[i]]+k∗b[i]}


【输入样例】 
8 2 
2 100 4 
4 100 2 
【输出样例】 
400

 

代码如下

#include<iostream>

using namespace std;
int main()
{
    int m,n;
    cin>>m>>n;
    int a[10001],b[10001],c[10001];
    for(int i=1;i<=n;i++){
        cin>>a[i]>>b[i]>>c[i];
    }
    int f[10001];
    for(int i=1;i<=n;i++)
    for(int j=m;j>=0;j--)
    for(int k=0;k<=c[i];k++){
        if(j-k*a[i]<0)break;
        f[j]=max(f[j],f[j-k*a[i]]+k*b[i]);
    }
    cout<<f[m]<<endl;//最优解
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值