CUDA性能优化----kernel调优(nvprof工具的使用)

CUDA性能优化----kernel调优(nvprof工具的使用)  

2017-01-13 11:41:28|  分类: HPC&CUDA优化 |  标签:hpc  gpu  cuda   |举报 |字号 订阅

1、引言

本文主要介绍并行分析,涉及掌握 nvprof的几个 metrics参数,所用的例子是 CUDA性能优化----线程配置一文中所提到的sumMatrix2D.cu例子。
接下来本文会做一些列的试验, 测试环境:Tesla M2070一块,CUDA 6.0,
操作系统:Red Hat 4.1.2-50,gcc version 4.1.2 20080704

首先回顾一下 sumMatrix2D的kernel函数:

__global__ void sumMatrix2DKernel(float *d_MatA,float *d_MatB,float *d_MatC,int nx,int ny) { int idx = threadIdx.x + blockDim.x * blockIdx.x; int idy = threadIdx.y + blockDim.y * blockIdx.y; int tid = nx*idy + idx; if(idx < nx && idy < ny) d_MatC[tid] = d_MatA[tid] + d_MatB[tid]; }

输入数据矩阵的维度是nx=16384, ny=16384:
int nx = 1<<14;
int ny = 1<<14;
下面的代码用来配置main函数的参数,也就是block的维度配置:

if (argc > 2) 

{ dimx = atoi(argv[1]); dimy = atoi(argv[2]); } dim3 block(dimx, dimy); dim3 grid((nx + block.x - 1) / block.x, (ny + block.y - 1) / block.y);

编译运行:
$ nvcc -O3 -arch=sm_20 sumMatrix2D.cu -o sumMatrix2D
$ ./sumMatrix2D 32 32
其中第二句命令中的"32 32"是指定block维度的参数。
---------------------------------------------------------------------------------------------------------------------------
查询nvprof工具版本的命令:
$ nvprof --version
输出:

nvprof: NVIDIA (R) Cuda command line profiler Copyright (c) 2013 - 2014 NVIDIA Corporation Release version 6.0 (20)

2、Checking Active Warps with nvprof

在做各项数据比较的时候需要有个基准,这里使用四个block维度配置的时间消耗作为基准观察,分别为(32,32)(32,16)(16,32)和(16,16),其中第一个参数是x维度,第二个参数是y维度。
下面是几种配置的时间消耗输出结果:

$ ./sumMatrix2D 32 32

./sumMatrix2D Program Starting... --sumMatrix2DOnHost() elapsed 360.000000 ms.. --sumMatrix2DOnGPU<<<(512,512),(32,32)>>> elapsed 70.000000 ms..

$ ./sumMatrix2D 32 16 ./sumMatrix2D Program Starting... --sumMatrix2DOnHost() elapsed 360.000000 ms.. --sumMatrix2DOnGPU<<<(512,1024),(32,16)>>> elapsed 40.000000 ms..

$ ./sumMatrix2D 16 32 ./sumMatrix2D Program Starting... --sumMatrix2DOnHost() elapsed 360.000000 ms.. --sumMatrix2DOnGPU<<<(1024,512),(16,32)>>> elapsed 60.000000 ms..

$ ./sumMatrix2D 16 16 ./sumMatrix2D Program Starting... --sumMatrix2DOnHost() elapsed 360.000000 ms.. --sumMatrix2DOnGPU<<<(1024,1024),(16,16)>>> elapsed 50.000000 ms..

比较这几个结果,不难发现,性能最差的是第一个(32,32),性能最好的是第二个(32,16),这里可以猜测到是:拥有更多的block数目并行性更好。这个猜测可以 使用nvprof 的achieved_occupancy这个metric参数来验证。该参数的定义公式在 CUDA性能优化----warp深度解析 有介绍,实际上就是指每个SM在每个cycle能够达到的最大active warp数目占总warp的比例。下面是使用该参数后得到的结果(注意由于输出项多,做了简化处理):
命令: $ nvprof --metrics achieved_occupancy ./sumMatrix2D 32 32

$ nvprof --metrics achieved_occupancy ./sumMatrix2D 32 32 ==27432== NVPROF is profiling process 27432, command: ./sumMatrix2D 32 32

--sumMatrix2DOnGPU<<<(512,512),(32,32)>>> achieved_occupancy 0.506396

$ nvprof --metrics achieved_occupancy ./sumMatrix2D 32 16
==27454== NVPROF is profiling process 27454, command: ./sumMatrix2D 32 16

--sumMatrix2DOnGPU<<<(512,1024),(32,16)>>> achieved_occupancy 0.731333

$ nvprof --metrics achieved_occupancy ./sumMatrix2D 16 32
==27493== NVPROF is profiling process 27493, command: ./sumMatrix2D 16 32

--sumMatrix2DOnGPU<<<(1024,512),(16,32)>>> achieved_occupancy 0.826147

$ nvprof --metrics achieved_occupancy ./sumMatrix2D 16 16
==27545== NVPROF is profiling process 27545, command: ./sumMatrix2D 16 16

--sumMatrix2DOnGPU<<<(1024,1024),(16,16)>>> achieved_occupancy 0.819718

从上面的输出对比可以得知两点认识:
(1)由于第二个配置比第一个有更多的block数量,device就会达到更多active warp(跟鸡蛋放在多个篮子的道理差不多)。也就是第二个性能优于第一个的原因。
(2)第四个的achieved Occupancy比较高,但是却不是最快的,因此,较高的achieved Occupancy并不一定就意味着更好的性能,也就是说还有更多的因素影响着GPU的性能。

3、checking memory operations with nvprof

对于 d_MatC[tid] = d_MatA[tid] + d_MatB[tid]来说共有三个memory操作:两个memory load和一个memory store。要查看这些操作的效率可以使用nvprof的两个metric参数, 如果想要查看memory的throughput,则可使用gld_throughput 参数 ,实验结果如下 (注意由于输出项多,做了简化处理)
命令:$ nvprof --metrics gld_throughput ./sumMatrix2D 32 32

$ nvprof --metrics gld_throughput ./sumMatrix2D 32 32 --sumMatrix2DOnGPU<<<(512,512),(32,32)>>> elapsed 1090.000000 ms..

--Global Load Throughput35.557GB/s

$ nvprof --metrics gld_throughput ./sumMatrix2D 32 16
--sumMatrix2DOnGPU<<<(512,1024),(32,16)>>> elapsed 1440.000000 ms..

--Global Load Throughput56.396GB/s

$ nvprof --metrics gld_throughput ./sumMatrix2D 16 32
--sumMatrix2DOnGPU<<<(1024,512),(16,32)>>> elapsed 1070.000000 ms..

--Global Load Throughput81.023GB/s

$ nvprof --metrics gld_throughput ./sumMatrix2D 16 16
--sumMatrix2DOnGPU<<<(1024,1024),(16,16)>>> elapsed 1060.000000 ms..

--Global Load Throughput93.694GB/s

不难看到,第四个拥有最高的load throughput,但是却比第二个慢(第二个也就是第四个的一半多点),所以, 较高的load throughput也不一定就有较高的性能。之后讲到memory transaction时会具体分析这种现象的原因, 简单说,就是高load throughput有可能是一种假象,如果需要的数据在memory中存储格式未对齐、不连续,会导致许多额外的不必要的load操作,所以本文中的efficiency会这么低。

然后,我们可以 使用nvprof的gld_efficiency来度量load efficiency该metric参数是指我们确切需要的global load throughput与实际得到global load memory的比值。这个metric参数可以让我们知道,应用程序的load操作利用device memory bandwidth的程度, 实验结果如下 (注意由于输出项多,做了简化处理)
命令:$ nvprof --metrics gld_efficiency ./sumMatrix2D 32 32

$ nvprof --metrics gld_efficiency ./sumMatrix2D 32 32 --sumMatrix2DOnGPU<<<(512,512),(32,32)>>> elapsed 1610.000000 ms.. --Global Memory Load Efficiency100.01%

$ nvprof --metrics gld_efficiency ./sumMatrix2D 32 16
--sumMatrix2DOnGPU<<<(512,1024),(32,16)>>> elapsed 1610.000000 ms..
--Global Memory Load Efficiency99.95%

$ nvprof --metrics gld_efficiency ./sumMatrix2D 16 32
--sumMatrix2DOnGPU<<<(1024,512),(16,32)>>> elapsed 1610.000000 ms..
--Global Memory Load Efficiency49.89%

$ nvprof --metrics gld_efficiency ./sumMatrix2D 16 16
--sumMatrix2DOnGPU<<<(1024,1024),(16,16)>>> elapsed 1610.000000 ms..
--Global Memory Load Efficiency49.99%

从上述结果可知,最后两个测试的load efficiency只是前两个的一半。这也可以解释,为什么较高的throughput和较高的Occupancy却没有产生较好的性能。 尽管最后两个测试的load操作数目要多不少(因为二者throughput较高),但是他们的load effecitiveness却低不少(由于efficiency较低)。
观察最后两个可以发现,他们block的x维配置是warp的一半,前文曾提到,该维度应该保持为warp大小的整数倍。关于其具体原因将在后续博文详细解释。

4、Exposing More Parallelism

我们现在可以得出一个结论: blockDim.x应该是warp大小的整数倍。 这样做是很容易就提升了load efficiency。现在,我们可能还有其他疑惑,比如:
(1)继续调整blockDim.x是否会继续增加load throughput?
(2)还有其他方法能增大并行性吗?
现在,我们重新整一个基准数据出来,这两个问题可以从这个基准分析个大概(此处改用了cuda的计时函数):

$ ./sumMatrix2D 64 2 --sumMatrix2DOnGPU<<<(256,8192),(64,2)>>> elapsed 33.527294 ms..

$ ./sumMatrix2D 64 4 --sumMatrix2DOnGPU<<<(256,4096),(64,4)>>> elapsed 34.802238 ms..

$ ./sumMatrix2D 64 8 --sumMatrix2DOnGPU<<<(256,2048),(64,8)>>> elapsed 36.614143 ms..

$ ./sumMatrix2D 128 2 --sumMatrix2DOnGPU<<<(128,8192),(128,2)>>> elapsed 32.602848 ms..

$ ./sumMatrix2D 128 4 --sumMatrix2DOnGPU<<<(128,4096),(128,4)>>> elapsed 34.658592 ms..

$ ./sumMatrix2D 128 8 --sumMatrix2DOnGPU<<<(128,2048),(128,8)>>> elapsed 46.740578 ms..

$ ./sumMatrix2D 256 2 --sumMatrix2DOnGPU<<<(64,8192),(256,2)>>> elapsed 32.661919 ms..

$ ./sumMatrix2D 256 4 --sumMatrix2DOnGPU<<<(64,4096),(256,4)>>> elapsed 38.260609 ms..

$ ./sumMatrix2D 256 8 --sumMatrix2DOnGPU<<<(64,2048),(256,8)>>> elapsed 0.013440 ms.. Result verification failed at elemnt 0

从上面测试数据,我们可以分析得到下面几条认识:
(1)最后一个配置(256,8)不可行,block中总共的thread数目超过了1024,这是GPU的硬件限制。
(2)最好的结果是第四个block配置(128,2)。
(3)第一个启动了最多的block,但不是最快的。
(4)因为第二个与第四个在一个block中拥有相同数目的thread,本应猜测二者有相同的表现,但是实际却是第二个略逊色,所以blockDim.x的大小 是很关键的。
(5)剩下的相对第四个都有较少的block数目,所以并行规模也是影响性能的关键因素。
现在,我们又有疑惑了,拥有block最少的应该会有一个最低的achieved Occupancy吧?而拥有最多block的应该会达到最高的achieved Occupancy吧?为了验证这些想法,我们再看一组测试数据:

$ nvprof --metrics achieved_occupancy ./sumMatrix2D 64 2 --sumMatrix2DOnGPU<<<(256,8192),(64,2)>>> elapsed 37.495487 ms.. --Achieved Occupancy 0.555373

$ nvprof --metrics achieved_occupancy ./sumMatrix2D 64 4 --sumMatrix2DOnGPU<<<(256,4096),(64,4)>>> elapsed 38.886177 ms.. --Achieved Occupancy 0.795769
$ nvprof --metrics achieved_occupancy ./sumMatrix2D 64 8 --sumMatrix2DOnGPU<<<(256,2048),(64,8)>>> elapsed 40.603359 ms.. --Achieved Occupancy 0.757109
$ nvprof --metrics achieved_occupancy ./sumMatrix2D 128 2 --sumMatrix2DOnGPU<<<(128,8192),(128,2)>>> elapsed 36.666466 ms.. --Achieved Occupancy 0.803921
$ nvprof --metrics achieved_occupancy ./sumMatrix2D 128 4 --sumMatrix2DOnGPU<<<(128,4096),(128,4)>>> elapsed 38.689377 ms.. --Achieved Occupancy 0.746745
$ nvprof --metrics achieved_occupancy ./sumMatrix2D 128 8 --sumMatrix2DOnGPU<<<(128,2048),(128,8)>>> elapsed 50.706112 ms.. --Achieved Occupancy 0.561505
$ nvprof --metrics achieved_occupancy ./sumMatrix2D 256 2 --sumMatrix2DOnGPU<<<(64,8192),(256,2)>>> elapsed 36.828159 ms.. --Achieved Occupancy 0.762112
$ nvprof --metrics achieved_occupancy ./sumMatrix2D 256 4 --sumMatrix2DOnGPU<<<(64,4096),(256,4)>>> elapsed 42.040642 ms.. --Achieved Occupancy 0.589849
$ nvprof --metrics achieved_occupancy ./sumMatrix2D 256 8 --sumMatrix2DOnGPU<<<(64,2048),(256,8)>>> elapsed 0.015296 ms.. Result verification failed at elemnt 0 No events/metrics were profiled. ======== Error: Application returned non-zero code 1
通过上面测试数据对比分析:
(1)第一个(64,2)的achieved Occupancy竟然是最低的,尽管他有最多的block,它达到了硬件对block数量的限制。
(2)第四个(128,2)和第七个(256,2)拥有拥有不错的achieved Occupancy。
如果我们对这两个再做一个试验,再次增大,将blockDim.y设置为1,这也减少了block的大小。

$ ./sumMatrix2D 128 1 --sumMatrix2DOnGPU<<<(128,16384),(128,1)>>> elapsed 32.535934 ms.. $ ./sumMatrix2D 256 1 --sumMatrix2DOnGPU<<<(64,16384),(256,1)>>> elapsed 30.843328 ms..

这次测试有了更高的性能提升,并且(256,1)配置比(128,1)配置更好,再次查询(256,1)block配置的achieved Occupancy,load throughput和load efficiency等参数:

$ nvprof --metrics achieved_occupancy ./sumMatrix2D 256 1 --sumMatrix2DOnGPU<<<(64,16384),(256,1)>>> Achieved Occupancy 0.807456

$ nvprof --metrics gld_throughput ./sumMatrix2D 256 1 --sumMatrix2DOnGPU<<<(64,16384),(256,1)>>> Global Load Throughput 69.512GB/s

$ nvprof --metrics gld_efficiency ./sumMatrix2D 256 1 --sumMatrix2DOnGPU<<<(64,16384),(256,1)>>> Global Memory Load Efficiency100.21%

现在可以看出,最佳的block配置既不是拥有最高achieved Occupancy也不是最高load throughput的。所以不存在唯一metric参数来优化计算性能,我们需要从众多metric中寻求一个平衡。

5、总结

在大多数情形下,并不存在唯一的metric可以精确的优化性能。
(1)哪个metric或者event对性能的影响大小是由kernel具体的代码决定的;
(2)根据需要根据实际情况在众多相关的metric参数和event中寻求一个平衡;
(3)Grid/blcok heuristics(启发) 为调节性能提供了不错的切入点。

本文测试代码:

#include <cuda_runtime.h> #include <stdio.h> #include <math.h> #include <time.h> #define PRECISION 1e-5 #define HANDLE_ERROR(err) (HandleError( err, __FILE__, __LINE__ )) int main(int argc, char **argv) { //printf("%s Program Starting...\n",argv[0]); // set up device int devID = 0; cudaDeviceProp deviceProp; HANDLE_ERROR(cudaGetDeviceProperties(&deviceProp, devID)); //printf("Using Device %d: %s\n", devID, deviceProp.name); HANDLE_ERROR(cudaSetDevice(devID)); // set up date size of matrix int nx = 1<<14; int ny = 1<<14; int nxy = nx*ny; int nBytes = nxy * sizeof(float); //printf("Matrix size: nx= %d, ny= %d\n",nx, ny); // malloc host memory float *h_A, *h_B, *hostRef, *gpuRef; h_A = (float *)malloc(nBytes); h_B = (float *)malloc(nBytes); hostRef = (float *)malloc(nBytes); gpuRef = (float *)malloc(nBytes); // initialize data at host side for(int i=0;i<nxy;i++) { h_A[i] = rand()/(float)RAND_MAX; h_B[i] = rand()/(float)RAND_MAX; } memset(hostRef, 0, nBytes); memset(gpuRef, 0, nBytes); // add matrix at host side for result checks float iElaps; clock_t iStart,iEnd; iStart = clock(); // time counter sumMatrix2DOnHost(h_A, h_B, hostRef, nx,ny); iEnd = clock(); //iElaps = (double)(iEnd-iStart)/CLOCKS_PER_SEC; // second iElaps = (double)(iEnd-iStart)/1000; // ms printf("--sumMatrix2DOnHost() elapsed %f ms..\n", iElaps); // malloc device global memory float *d_MatA, *d_MatB, *d_MatC; cudaMalloc((void **)&d_MatA, nBytes); cudaMalloc((void **)&d_MatB, nBytes); cudaMalloc((void **)&d_MatC, nBytes); // transfer data from host to device cudaMemcpy(d_MatA, h_A, nBytes, cudaMemcpyHostToDevice); cudaMemcpy(d_MatB, h_B, nBytes, cudaMemcpyHostToDevice); // invoke kernel at host side //int dimx = 32; //int dimx = 16; //int dimy = 32; //int dimy = 16; int dimx, dimy; if (argc > 2) //配置block的维度 { dimx = atoi(argv[1]); dimy = atoi(argv[2]); } dim3 block(dimx, dimy); dim3 grid((nx+block.x-1)/block.x, (ny+block.y-1)/block.y); // calculate run time on GPU float elapsedTime; cudaEvent_t start, stop; HANDLE_ERROR(cudaEventCreate(&start)); HANDLE_ERROR(cudaEventCreate(&stop)); HANDLE_ERROR(cudaEventRecord(start, 0)); sumMatrix2DKernel <<< grid, block >>>(d_MatA, d_MatB, d_MatC, nx, ny); cudaDeviceSynchronize(); HANDLE_ERROR(cudaEventRecord(stop, 0)); HANDLE_ERROR(cudaEventSynchronize(stop)); HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime, start, stop)); printf("--sumMatrix2DOnGPU<<<(%d,%d),(%d,%d)>>> elapsed %f ms..\n", grid.x, grid.y, block.x, block.y, elapsedTime); // // copy kernel result back to host side cudaMemcpy(gpuRef, d_MatC, nBytes, cudaMemcpyDeviceToHost); // check device results for(int i=0; i< nxy; i++) { if(fabs(gpuRef[i]-hostRef[i]) > PRECISION) { fprintf(stderr,"Result verification failed at elemnt %d\n", i); exit(EXIT_FAILURE); } } // free device global memory cudaFree(d_MatA); cudaFree(d_MatB); cudaFree(d_MatC); // free host memory free(h_A); free(h_B); free(hostRef); free(gpuRef); // reset device cudaDeviceReset(); //printf("Test Passed..\n"); return 0; }


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值