雅可比矩阵的意义

雅可比矩阵的意义

雅可比矩阵的应用场景是进行坐标基变换的时候,揭露微元之间的关系。

设一个在 x y xy xy 坐标下的向量 m → \overrightarrow{m} m ,用这个坐标系的基来表示: m → = m x x → + m y y → \overrightarrow{m}=m_x\overrightarrow{x}+m_y\overrightarrow{y} m =mxx +myy

m → \overrightarrow{m} m 通过函数 f f f 变换到了 u v uv uv 坐标系后成为 n → \overrightarrow{n} n ,用新基表示: n → = n u u → + n v v → \overrightarrow{n}=n_u\overrightarrow{u}+n_v\overrightarrow{v} n =nuu +nvv ,并且有:
f ( m → ) = n → f(\overrightarrow{m})=\overrightarrow{n} f(m )=n
对于二元函数泰勒公式,我们有:
f ( x + △ x , y + △ y ) = f ( x , y ) + △ x ⋅ ∂ f ∂ x + △ y ⋅ ∂ f ∂ y + o 2 f(x+\triangle x,y+\triangle y)=f(x,y)+\triangle x\cdot\frac{\partial f}{\partial x}+\triangle y\cdot\frac{\partial f}{\partial y}+o^2 f(x+x,y+y)=f(x,y)+xxf+yyf+o2
对于复杂的函数 f f f ,其映射的规律是难以讨论的。微积分的思想永远是用“直线”,“平面”来拟合"曲线",“曲面”,在这里也是这样,我们假设 f f f 对向量 m → \overrightarrow{m} m 的向量空间邻域内的所有的向量的映射都是线性的,即泰勒公式忽略二次项以后的所有项:
f ( x + △ x , y + △ y ) = f ( x , y ) + △ x ⋅ ∂ f ∂ x + △ y ⋅ ∂ f ∂ y f(x+\triangle x,y+\triangle y)=f(x,y)+\triangle x\cdot\frac{\partial f}{\partial x}+\triangle y\cdot\frac{\partial f}{\partial y} f(x+x,y+y)=f(x,y)+xxf+yyf
我们设向量 m → \overrightarrow{m} m 邻域内的另一个向量 m ′ → \overrightarrow{m'} m ,则有 m ′ → = ( m x + △ x ) x → + ( m y + △ y ) y → \overrightarrow{m'}=(m_x+\triangle x)\overrightarrow{x}+(m_y+\triangle y)\overrightarrow{y} m =(mx+x)x +(my+y)y ,其经过 f f f 映射到向量 n ′ → \overrightarrow{n'} n

将函数 f f f 拆分成两个函数: U , V U,V UV ,即有:
U ( m x , m y ) = n u V ( m x , m y ) = n v U(m_x,m_y)=n_u\\ V(m_x,m_y)=n_v U(mx,my)=nuV(mx,my)=nv
这个拆分说明了向量 n → \overrightarrow{n} n 的u和v坐标,和x,y都有关,而不是仅仅是简单的u和x对应,v和y对应。

对U,V做线性的泰勒展开:
U ( m x + △ x x → , m y + △ y y → ) = U ( m x , m y ) + △ x x → ⋅ ∂ U ∂ x + △ y y → ⋅ ∂ U ∂ y = n u + △ x x → ⋅ ∂ U ∂ x + △ y y → ⋅ ∂ U ∂ y U(m_x+\triangle x\overrightarrow{x},m_y+\triangle y\overrightarrow{y})=U(m_x,m_y)+\triangle x\overrightarrow{x}\cdot\frac{\partial U}{\partial x}+\triangle y\overrightarrow{y}\cdot\frac{\partial U}{\partial y}=n_u+\triangle x\overrightarrow{x}\cdot\frac{\partial U}{\partial x}+\triangle y\overrightarrow{y}\cdot\frac{\partial U}{\partial y} U(mx+xx ,my+yy )=U(mx,my)+xx xU+yy yU=nu+xx xU+yy yU

V ( m x + △ x x → , m y + △ y y → ) = V ( m x , m y ) + △ x x → ⋅ ∂ V ∂ x + △ y y → ⋅ ∂ V ∂ y = n v + △ x x → ⋅ ∂ V ∂ x + △ y y → ⋅ ∂ V ∂ y V(m_x+\triangle x\overrightarrow{x},m_y+\triangle y\overrightarrow{y})=V(m_x,m_y)+\triangle x\overrightarrow{x}\cdot\frac{\partial V}{\partial x}+\triangle y\overrightarrow{y}\cdot\frac{\partial V}{\partial y}=n_v +\triangle x\overrightarrow{x}\cdot\frac{\partial V}{\partial x}+\triangle y\overrightarrow{y}\cdot\frac{\partial V}{\partial y} V(mx+xx ,my+yy )=V(mx,my)+xx xV+yy yV=nv+xx xV+yy yV

写成矩阵的形式:

( U ( m x + △ x x → , m y + △ y y → ) V ( m x + △ x x → , m y + △ y y → ) ) = ( U ( m x , m y ) V ( m x , m y ) ) + ( △ x x → ⋅ ∂ U ∂ x + △ y y → ⋅ ∂ U ∂ y △ x x → ⋅ ∂ V ∂ x + △ y y → ⋅ ∂ V ∂ y ) \left( \begin{matrix} U(m_x+\triangle x\overrightarrow{x},m_y+\triangle y\overrightarrow{y})\\ V(m_x+\triangle x\overrightarrow{x},m_y+\triangle y\overrightarrow{y}) \end{matrix} \right)= \left( \begin{matrix} U(m_x,m_y)\\ V(m_x,m_y) \end{matrix} \right) + \left( \begin{matrix} \triangle x\overrightarrow{x}\cdot\frac{\partial U}{\partial x}+\triangle y\overrightarrow{y}\cdot\frac{\partial U}{\partial y}\\ \triangle x\overrightarrow{x}\cdot\frac{\partial V}{\partial x}+\triangle y\overrightarrow{y}\cdot\frac{\partial V}{\partial y} \end{matrix} \right) (U(mx+xx ,my+yy )V(mx+xx ,my+yy ))=(U(mx,my)V(mx,my))+(xx xU+yy yUxx xV+yy yV)

即:

n ’ → = n → + ( ∂ U ∂ x ∂ U ∂ y ∂ V ∂ x ∂ V ∂ y ) ( △ x x → △ y y → ) \overrightarrow{n’}=\overrightarrow{n}+ \left( \begin{matrix} \frac{\partial U}{\partial x}&\frac{\partial U}{\partial y}\\ \frac{\partial V}{\partial x}&\frac{\partial V}{\partial y} \end{matrix} \right) \left( \begin{matrix} \triangle x\overrightarrow{x}\\ \triangle y\overrightarrow{y} \end{matrix} \right) n =n +(xUxVyUyV)(xx yy )
我们将矩阵 ( ∂ U ∂ x ∂ U ∂ y ∂ V ∂ x ∂ V ∂ y ) \left( \begin{matrix} \frac{\partial U}{\partial x}&\frac{\partial U}{\partial y}\\ \frac{\partial V}{\partial x}&\frac{\partial V}{\partial y} \end{matrix} \right) (xUxVyUyV) 记作雅可比矩阵 J J J

显然,我们由如下的结论:

( △ u u → △ v v → ) = J ⋅ ( △ x x → △ y y → ) \left( \begin{matrix} \triangle u\overrightarrow{u}\\ \triangle v\overrightarrow{v} \end{matrix} \right)= J\cdot \left( \begin{matrix} \triangle x\overrightarrow{x}\\ \triangle y\overrightarrow{y} \end{matrix} \right) (uu vv )=J(xx yy )

雅可比矩阵联系起了不同微元之间的关系。

因 为 : ( △ u u → △ v v → ) = ( △ x x → ⋅ ∂ U ∂ x + △ y y → ⋅ ∂ U ∂ y △ x x → ⋅ ∂ V ∂ x + △ y y → ⋅ ∂ V ∂ y ) 因为:\left( \begin{matrix} \triangle u\overrightarrow{u}\\ \triangle v\overrightarrow{v} \end{matrix} \right)= \left( \begin{matrix} \triangle x\overrightarrow{x}\cdot\frac{\partial U}{\partial x}+\triangle y\overrightarrow{y}\cdot\frac{\partial U}{\partial y}\\ \triangle x\overrightarrow{x}\cdot\frac{\partial V}{\partial x}+\triangle y\overrightarrow{y}\cdot\frac{\partial V}{\partial y} \end{matrix} \right) (uu vv )=(xx xU+yy yUxx xV+yy yV)
我们将矩阵上下叉积:
△ u △ v = ∂ u ∂ x ∂ v ∂ y △ x △ y − ∂ u ∂ y ∂ v ∂ x △ x △ y = ∣ ∂ U ∂ x ∂ U ∂ y ∂ V ∂ x ∂ V ∂ y ∣ △ x △ y \triangle u\triangle v = \frac{\partial u}{\partial x}\frac{\partial v}{\partial y}\triangle x\triangle y-\frac{\partial u}{\partial y}\frac{\partial v}{\partial x}\triangle x\triangle y= \left| \begin{matrix} \frac{\partial U}{\partial x}&\frac{\partial U}{\partial y}\\ \frac{\partial V}{\partial x}&\frac{\partial V}{\partial y} \end{matrix} \right|\triangle x\triangle y uv=xuyvxyyuxvxy=xUxVyUyVxy
可见,雅可比矩阵的行列式 ∣ J ∣ |J| J 就是二维面积微元的比例。

一般的,对于三维,这个结论依然成立,雅可比行列式是体积微元的比例

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值