Equivalent Sets
Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Others)Total Submission(s): 3070 Accepted Submission(s): 1079
Problem Description
To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
Input
The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
Output
For each case, output a single integer: the minimum steps needed.
Sample Input
4 0 3 2 1 2 1 3
Sample Output
4 2HintCase 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
Source
Recommend
题目大意:问加几个边,让他成为一个强连通分量
ac代码
#include<stdio.h>
#include<string.h>
#include<queue>
#include<string>
#include<iostream>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
using namespace std;
int inde[50020],outde[50020];
int dfn[50020],low[50020],ins[50020],belong[50020],stack[50020],cnt,head[50050],top,taj,time;
struct s
{
int u,v,next;
}edge[50050];
void add(int u,int v)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void init()
{
cnt=0;
memset(head,-1,sizeof(head));
top=taj=0;
memset(dfn,-1,sizeof(dfn));
memset(belong,-1,sizeof(belong));
memset(low,-1,sizeof(low));
memset(ins,0,sizeof(ins));
time=0;
}
void tarjan(int u)
{
dfn[u]=low[u]=time++;
ins[u]=1;
stack[top++]=u;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(dfn[v]==-1)
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else
if(ins[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u])
{
int now;
taj++;
do
{
now=stack[--top];
ins[now]=0;
belong[now]=taj;
}while(now!=u);
}
}
int n,m;
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
int i;
init();
for(i=0;i<m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
for(i=1;i<=n;i++)
if(dfn[i]==-1)
tarjan(i);
if(n<1||taj==1)
{
printf("0\n");
continue;
}
int ans1,ans2;
ans1=ans2=0;
memset(inde,0,sizeof(inde));
memset(outde,0,sizeof(outde));
for(i=0;i<cnt;i++)
{
int u=edge[i].u;
int v=edge[i].v;
if(belong[u]!=belong[v])
{
inde[belong[v]]++;
outde[belong[u]]++;
}
}
for(i=1;i<=taj;i++)
{
if(inde[i]==0)
ans1++;
if(outde[i]==0)
ans2++;
}
printf("%d\n",max(ans1,ans2));
}
}