BZOJ 题目1798: [Ahoi2009]Seq 维护序列seq(双标记线段树)

1798: [Ahoi2009]Seq 维护序列seq

Time Limit: 30 Sec   Memory Limit: 64 MB
Submit: 3636   Solved: 1340
[ Submit][ Status][ Discuss]

Description

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。

Input

第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

Output

对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。

Sample Input

7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7

Sample Output

2
35
8

HINT

【样例说明】

初始时数列为(1,2,3,4,5,6,7)。
经过第1次操作后,数列为(1,10,15,20,25,6,7)。
对第2次操作,和为10+15+20=45,模43的结果是2。
经过第3次操作后,数列为(1,10,24,29,34,15,16}
对第4次操作,和为1+10+24=35,模43的结果是35。
对第5次操作,和为29+34+15+16=94,模43的结果是8。



测试数据规模如下表所示

数据编号 1 2 3 4 5 6 7 8 9 10
N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000

Source

Day1

这个题给力30秒啊啊啊啊。。

ac代码

/**************************************************************
	Problem: 1798
	User: kxh1995
	Language: C++
	Result: Accepted
	Time:7548 ms
	Memory:10184 kb
****************************************************************/

#include<stdio.h>
#include<string.h>
struct s
{
	long long af,mf,sum;
}node[100010<<2];
int n,mod;
void pushup(int tr)
{
	node[tr].sum=(node[tr<<1].sum+node[tr<<1|1].sum)%mod;
}
void build(int l,int r,int tr)
{
	node[tr].af=0;
	node[tr].mf=1;
	if(l==r)
	{
		int x;
		scanf("%d",&x);
		node[tr].sum=x%mod;
		return;
	}
	int mid=(l+r)>>1;
	build(l,mid,tr<<1);
	build(mid+1,r,tr<<1|1);
	pushup(tr);
}
void pushdown(int tr,int len)
{
	if(len==1)
		return;
	long long m=node[tr].mf,a=node[tr].af;
	node[tr<<1].sum=(node[tr<<1].sum*m%mod+(len-(len>>1))*a%mod)%mod;
	node[tr<<1|1].sum=(node[tr<<1|1].sum*m%mod+(len>>1)*a%mod)%mod;
	node[tr<<1].af=(node[tr<<1].af*m%mod+a)%mod;
	node[tr<<1|1].af=(node[tr<<1|1].af*m%mod+a)%mod;
	node[tr<<1].mf=node[tr<<1].mf*m%mod;
	node[tr<<1|1].mf=node[tr<<1|1].mf*m%mod;
	node[tr].mf=1;
	node[tr].af=0;
}
void update(int L,int R,int l,int r,int tr,long long m,long long a)
{
	pushdown(tr,r-l+1);
	if(L<=l&&r<=R)
	{
		node[tr].sum=(node[tr].sum*m%mod+(r-l+1)*a)%mod;
		node[tr].mf=(node[tr].mf*m)%mod;
		node[tr].af=(node[tr].af*m%mod+a)%mod;
		return;
	}
	int mid=(l+r)>>1;
	if(L<=mid)
		update(L,R,l,mid,tr<<1,m,a);
	if(R>mid)
		update(L,R,mid+1,r,tr<<1|1,m,a);
	pushup(tr);
}
long long query(int L,int R,int l,int r,int tr)
{
	pushdown(tr,r-l+1);
	if(L<=l&&r<=R)
	{
		return node[tr].sum;
	}
	int mid=(l+r)>>1;
	long long  ans1,ans2;
	ans1=ans2=0;
	if(L<=mid)
		ans1=query(L,R,l,mid,tr<<1);
	if(R>mid)
		ans2=query(L,R,mid+1,r,tr<<1|1);
	//pushup(tr);
	return (ans1+ans2)%mod;
}
int main()
{
	//int n,mod;
	while(scanf("%d%d",&n,&mod)!=EOF)
	{
		build(1,n,1);
		int q;
		scanf("%d",&q);
		while(q--)
		{
			int op,x,y;
			scanf("%d%d%d",&op,&x,&y);
			if(op==1)
			{
				long long t;
				scanf("%lld",&t);
				update(x,y,1,n,1,t,0);
			}
			else
			{
				if(op==2)
				{
					long long t;
					scanf("%lld",&t);
					update(x,y,1,n,1,1,t);
				}
				else
				{
					printf("%lld\n",query(x,y,1,n,1));
				}
			}
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值