1798: [Ahoi2009]Seq 维护序列seq
Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 3636 Solved: 1340
[ Submit][ Status][ Discuss]
Description
老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。
Input
第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。
Output
对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。
Sample Input
7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
Sample Output
2
35
8
35
8
HINT
【样例说明】
初始时数列为(1,2,3,4,5,6,7)。
经过第1次操作后,数列为(1,10,15,20,25,6,7)。
对第2次操作,和为10+15+20=45,模43的结果是2。
经过第3次操作后,数列为(1,10,24,29,34,15,16}
对第4次操作,和为1+10+24=35,模43的结果是35。
对第5次操作,和为29+34+15+16=94,模43的结果是8。
测试数据规模如下表所示
数据编号 1 2 3 4 5 6 7 8 9 10
N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
Source
这个题给力30秒啊啊啊啊。。
ac代码
/**************************************************************
Problem: 1798
User: kxh1995
Language: C++
Result: Accepted
Time:7548 ms
Memory:10184 kb
****************************************************************/
#include<stdio.h>
#include<string.h>
struct s
{
long long af,mf,sum;
}node[100010<<2];
int n,mod;
void pushup(int tr)
{
node[tr].sum=(node[tr<<1].sum+node[tr<<1|1].sum)%mod;
}
void build(int l,int r,int tr)
{
node[tr].af=0;
node[tr].mf=1;
if(l==r)
{
int x;
scanf("%d",&x);
node[tr].sum=x%mod;
return;
}
int mid=(l+r)>>1;
build(l,mid,tr<<1);
build(mid+1,r,tr<<1|1);
pushup(tr);
}
void pushdown(int tr,int len)
{
if(len==1)
return;
long long m=node[tr].mf,a=node[tr].af;
node[tr<<1].sum=(node[tr<<1].sum*m%mod+(len-(len>>1))*a%mod)%mod;
node[tr<<1|1].sum=(node[tr<<1|1].sum*m%mod+(len>>1)*a%mod)%mod;
node[tr<<1].af=(node[tr<<1].af*m%mod+a)%mod;
node[tr<<1|1].af=(node[tr<<1|1].af*m%mod+a)%mod;
node[tr<<1].mf=node[tr<<1].mf*m%mod;
node[tr<<1|1].mf=node[tr<<1|1].mf*m%mod;
node[tr].mf=1;
node[tr].af=0;
}
void update(int L,int R,int l,int r,int tr,long long m,long long a)
{
pushdown(tr,r-l+1);
if(L<=l&&r<=R)
{
node[tr].sum=(node[tr].sum*m%mod+(r-l+1)*a)%mod;
node[tr].mf=(node[tr].mf*m)%mod;
node[tr].af=(node[tr].af*m%mod+a)%mod;
return;
}
int mid=(l+r)>>1;
if(L<=mid)
update(L,R,l,mid,tr<<1,m,a);
if(R>mid)
update(L,R,mid+1,r,tr<<1|1,m,a);
pushup(tr);
}
long long query(int L,int R,int l,int r,int tr)
{
pushdown(tr,r-l+1);
if(L<=l&&r<=R)
{
return node[tr].sum;
}
int mid=(l+r)>>1;
long long ans1,ans2;
ans1=ans2=0;
if(L<=mid)
ans1=query(L,R,l,mid,tr<<1);
if(R>mid)
ans2=query(L,R,mid+1,r,tr<<1|1);
//pushup(tr);
return (ans1+ans2)%mod;
}
int main()
{
//int n,mod;
while(scanf("%d%d",&n,&mod)!=EOF)
{
build(1,n,1);
int q;
scanf("%d",&q);
while(q--)
{
int op,x,y;
scanf("%d%d%d",&op,&x,&y);
if(op==1)
{
long long t;
scanf("%lld",&t);
update(x,y,1,n,1,t,0);
}
else
{
if(op==2)
{
long long t;
scanf("%lld",&t);
update(x,y,1,n,1,1,t);
}
else
{
printf("%lld\n",query(x,y,1,n,1));
}
}
}
}
}