原题链接
思路
- 题意让维护区间,涉及操作有区间修改和区间查询,很明显的线段树+懒标记
- 再看需要维护的信息,就是线段树的节点,首先肯定有左右两个端点 l , r ,然后就是区间和 sum ,再有就是懒标记区间加add,区间乘 mul
- 有加有乘,那么我们就要确定优先级,如果是先加再乘,区间和是不好维护的,可以自己证明,所以我们先乘再加,例如 x * mul1 +add1 +add2 懒标记可以更新成 mul = mul1 ,add=add1+add2 ;(x * mul1 +add) * mul2 懒标记就可以更新成 mul =mul1 * mul2 , add = add * mul2 ,这样区间加/乘都可以很好的维护
- 进一步优化,我们可以将区间加和区间乘合并成一个操纵,公式 x * c + d , 当 d = 0 ,就是区间乘的操作,当 c = 1 ,就是区间加操作 区间懒标记更新也可以变化, (x * a + b)* c + d = x * ac + (bc +d) , 所以mul = ac ,add = bc + d (a代表原来的mul ,b代表原来的add ,c 代表传入的mul ,d 代表传入的 add)
- 注意数据范围,区间和会爆 int ,然后就是线段树+懒标记的模板了
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
ll n, p, m;
ll w[N];
struct Node {
ll l, r;
ll sum;
ll add, mul; //懒标记
} tr[4 * N];
//由子节点更新父节点
void pushup(ll u) {
tr[u].sum = (tr[u << 1].sum + tr[u << 1 | 1].sum)%p;
}
//懒标记更新
void eval(Node &t, ll add, ll mul) {
t.sum = (t.sum * mul + (t.r - t.l + 1) * add) % p;
t.mul = t.mul * mul % p;
t.add = (t.add * mul + add) % p;
}
//由父节点跟新子节点
void pushdowm(ll u) {
eval(tr[u << 1], tr[u].add, tr[u].mul);
eval(tr[u << 1 | 1], tr[u].add, tr[u].mul);
tr[u].add = 0, tr[u].mul = 1;
}
//建树
void build(ll u, ll l, ll r) {
if (l == r) tr[u] = {l, r, w[r], 0, 1};
else {
tr[u] = {l, r,0,0,1};
ll mid = (l + r) >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
//区间修改
void modify(ll u, ll l, ll r, ll add, ll mul) {
if (l <= tr[u].l && tr[u].r <= r) eval(tr[u], add, mul);
else {
pushdowm(u);
ll mid = (tr[u].l+tr[u].r) >> 1;
if (l <= mid) modify(u << 1, l, r, add, mul);
if (r > mid) modify(u << 1 | 1, l, r, add, mul);
pushup(u);
}
}
//区间查询
ll query(ll u, ll l, ll r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
else {
pushdowm(u);
ll mid = (tr[u].l + tr[u].r) >> 1;
if (r <= mid) return query(u << 1, l, r);
else if (l > mid) return query(u << 1 | 1, l, r);
else {
ll resl = query(u << 1, l, r);
ll resr = query(u << 1 | 1, l, r);
return (resl + resr)%p;
}
}
}
int main() {
cin >> n >> p;
for (int i = 1; i <= n; i++) scanf("%lld", &w[i]);
build(1, 1, n);
cin >> m;
while (m--) {
ll t, l, r, d;
cin >> t >> l >> r;
if (t == 1) {
cin >> d;
modify(1, l, r, 0, d);
} else if (t == 2) {
cin >> d;
modify(1, l, r, d, 1);
} else {
cout << query(1, l, r) << endl;
}
}
return 0;
}