878. 第 N 个神奇数字
一个正整数如果能被
a
或b
整除,那么它是神奇的。给定三个整数
n
,a
,b
,返回第n
个神奇的数字。因为答案可能很大,所以返回答案 对109 + 7
取模 后的值。示例 1:
输入:n = 1, a = 2, b = 3 输出:2示例 2:
输入:n = 4, a = 2, b = 3 输出:6提示:
1 <= n <= 10^9
2 <= a, b <= 4 * 10^4
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/nth-magical-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
做题结果
成功
方法:数学+二分
1. 求最大公约数
2. 每到达一次最大公约数,就是 从 a 到达的次数+从 b 到达次数 - lcm 次数
3. 那大概就在上一个公倍数,到下一个公倍数之间,比如 6,2,3 ,2和3最小公倍数是6,那每到达6就经过 3 个 2 的倍数 和 2 个 3 的倍数,其中 6 是公共的,减掉 1个,那每经过 6,就消耗掉 4 个数,所以可以确定,n=6 是经过了 1 个 最小公倍数周期,也就是 n/4*6=6,也就是大概在 6 到 12之间,可在这部分二分拿到答案。
class Solution {
public int nthMagicalNumber(int n, int a, int b) {
long lcm = lcm(a,b);
long time = lcm/a+lcm/b-1;
long left = n/time*lcm;
long right = (n/time+1)*lcm;
while(left<right){
long mid = (right-left)/2+left;
long cnt = mid/a+mid/b-mid/lcm;
if(cnt<n){
left = mid+1;
}else{
right = mid;
}
}
return (int) (right%(long)(1e9+7));
}
private long lcm(long a, long b){
long gcd = gcd(a,b);
return a/gcd*b/gcd*gcd;
}
private long gcd(long a, long b){
return b== 0?a:gcd(b,a%b);
}
}
时间复杂度:O(log(max(a,b)))
空间复杂度:O(1)
其他,如果a,b 较小, n 足够大(中间计算超过long)的情况下,怎么处理呢?
可考虑记录一个周期,而非直接计算次数,前面的部分,可直接计算到公倍数求余的和,最后一部分可先缩减到第一个周期计算,然后再补充前面的余数再求余。