python matplotlib学习笔记

这篇博客详细介绍了Python的matplotlib库,包括代码风格、二维和三维绘图的各种图形如折线图、柱形图、散点图、饼状图、等高线图和量场图的绘制方法。此外,还涵盖了图形样式设置,如颜色、线型、标记点、透明度、线宽,以及标题、轴标签刻度的设定,如何规范绘图、绘制子图、调整图形位置,甚至三维绘图的技巧。最后,讲解了如何保存图像。
摘要由CSDN通过智能技术生成

matplotlib 可以完成各种绘图,使用该库首先要导入 pyplot 库。

import matplotlib.pyplot as plt
from matplotlib import pyplot as plt   # 两种方法等效

代码风格

有两种风格完成图的绘制,一种是对象导向(OO)风格。这种风格适合于复杂绘图,代码可以被重用。

fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
ax.plot(x, x, label='linear')  # Plot some data on the axes.
ax.set_xlabel('x label')  # Add an x-label to the axes.
ax.set_ylabel('y label')  # Add a y-label to the axes.
ax.set_title("Simple Plot")  # Add a title to the axes.
ax.legend();  # Add a legend.

还有一种是 pyplot 风格。这种风格适合于快速绘图。

plt.figure(figsize=(5, 2.7), layout='constrained')
plt.plot(x, x, label='linear')  # Plot some data on the (implicit) axes.
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend();

figure 是一张画布,上面可以有各种各样的元素 axes,比如包含轴、线等。在第一种风格中,subplots() 方法创建了一张图,画布赋值给 fig,各种元素赋值给 ax。第二种风格中的 plt.figure() 方法也完成了创建图的操作。其中 figsize 参数表示图片大小。

二维绘图

除了能够绘制各种图形之外,同时也可以美化显示方式。

图形

下面介绍了绘制折线图、柱形图、饼状图等常见图形的方法。

折线图

plot() 方法可以绘制折线图。该方法传入一个列表即可完成折线图绘制,认为这个列表值为 y 值,x 值从 0 开始递增。如果需要自定义 x 值,传入两个列表即可,第一个参数列表为 x 值,第二个参数列表为 y 值。

plt.plot([1, 3, 2, 4])
plt.plot([2, 3, 4, 5], [1, 3, 2, 4])

柱形图

bar() 方法用于绘制柱形图。

plt.bar([1, 2, 3], [3, 5, 2])

散点图

scatter() 方法用于绘制散点图。

x = np.random.ranf(1000)
y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值