Hive相关基础知识

Hive相关基础知识


7pZ5wD.jpg

1. Hive简介

    Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行,通过自己的SQL查询分析需要的内容,这套SQL简称Hive SQL。

2. Hive数据模型

  1. Hive数据库。类似传统数据库的DataBase。
  2. 内部表。Hive的内部表与数据库中的Table在概念上是类似。
  3. 外部表。外部表指向已经在HDFS中存在的数据,可以创建Partition。它和内部表在元数据的组织上是相同的,而实际数据的存储则有较大的差异。
  4. 分区。Partition对应于数据库中的Partition列的密集索引。
  5. 桶。Buckets是将表的列通过Hash算法进一步分解成不同的文件存储。

3. Hive特点

    Hive表的数据默认只能在末尾追加。我们通常可以认为Hive不支持更新操作,这是因为Hive开启更新操作对性能影响极大,因此一般关闭Hive的更新功能。

  • Hive操作数据的特点:
  1. 支持分区存储数据
  2. 追加数据(append)
  3. 全表覆盖+新增(overwrite)
  4. 不支持更新
  5. 不支持删除
  • Hive本身特点:
  1. 可伸缩(在Hadoop的集群上动态添加设备)
  2. 可扩展
  3. 容错
  4. 输入格式的松散耦合

4. 使用Hive操作数据

    使用Scala语言来进行Hive的相关操作。

/*
* 需要在resources添加spark相关配置文件
*/
object HiveTest {
  // 设置用户
  System.setProperty("HADOOP_USER_NAME", "hdfs")
  // 设置SparkConf对象
  var conf: SparkConf = new SparkConf()
  conf.setAppName("HiveTest")
  conf.setMaster("local")
  // 创建SparkContext对象
  val spark: SparkContext = new SparkContext(conf)
  // 创建SparkSession对象
  val sparkSession: SparkSession = SparkSession
    .builder()
    .config(conf)
    .enableHiveSupport()
    .getOrCreate()


  def main(args: Array[String]): Unit = {
    val df01: DataFrame =  select()
    df01.show(10)
  }

  // 查找SQL
  def select(): DataFrame = {
    val sql = "select * from ods_frtfd.ods_ind_doc where date_ymd = '2021-11-03'"
    val dataFrame : DataFrame = sparkSession.sql(sql)
    dataFrame
  }
}

5. 参考链接

https://baike.baidu.com/item/hive/67986?fr=aladdin
https://blog.csdn.net/l1212xiao/article/details/80432759
https://cwiki.apache.org/confluence/display/Hive/Tutorial
https://www.cnblogs.com/ggzhangxiaochao/p/9363029.html

### 回答1: Hive是一个基于Hadoop的数据仓库工具,它提供了一种类似SQL的查询语言,用于将结构化数据存储在Hadoop集群上,并进行查询和分析。下面是一些关于Hive基础知识的选择题: 1. Hive的主要特点是什么? a) 提供类似SQL的查询语言 b) 可以在Hadoop集群上进行数据存储和分析 c) 可以处理结构化和半结构化数据 d) 所有选项都正确 答案:d) 所有选项都正确 2. Hive将数据存储在哪里? a) HBase b) Hadoop Distributed File System (HDFS) c) Cassandra d) MySQL 答案:b) Hadoop Distributed File System (HDFS) 3. Hive中的表可以与以下哪种文件格式关联? a) CSV b) JSON c) Parquet d) 所有选项都正确 答案:d) 所有选项都正确 4. Hive使用什么来对数据进行分区和排序? a) HDFS b) Tez c) MapReduce d) Apache Spark 答案:c) MapReduce 5. Hive中的数据查询和分析通过什么来实现? a) Hive Query Language (HQL) b) Structured Query Language (SQL) c) Apache Hive d) Apache Hadoop 答案:a) Hive Query Language (HQL) 总之,Hive是一个基于Hadoop的数据仓库工具,具有类似SQL的查询语言,可以在Hadoop集群上存储和分析结构化和半结构化数据。它使用HDFS来存储数据,可以与多种文件格式关联,并使用MapReduce来进行数据分区和排序。数据查询和分析通过Hive Query Language (HQL)来实现。 ### 回答2: Hive是一款基于Hadoop的数据仓库工具,它提供了方便的数据查询和分析的功能。接下来我将回答一些关于Hive基础知识的选择题。 1. Hive中的表是如何定义的? 答案:C. 使用HiveQL语句创建表。 2. 在Hive中,数据是如何存储的? 答案:B. 在Hadoop的HDFS文件系统中。 3. Hive中的分区是用来做什么的? 答案:A. 对数据进行逻辑上的划分,便于查询优化和数据管理。 4. 在Hive中,可以使用哪种语言进行数据查询? 答案:D. HiveQL。 5. 在Hive中,用来处理复杂逻辑和数据运算的是什么? 答案:B. Hive的UDF(用户定义函数)和UDAF(用户定义聚合函数)。 6. Hive的数据存储格式有哪些? 答案:A. 文本文件(TextFile)、序列文件(SequenceFile)和Parquet等。 7. Hive表中的数据可以通过什么方式进行加载? 答案:C. 使用Hive的LOAD DATA语句。 8. 在Hive中,用来创建管理表结构的是什么? 答案:B. Hive的元数据存储。 9. Hive的优势是什么? 答案:C. 简化了对Hadoop数据的查询和分析。 10. 使用Hive时,可以通过什么方式进行数据的导入和导出? 答案:D. 使用Hive的导入和导出命令。 以上是关于Hive基础知识的一些选择题的答案。Hive是一个功能强大且易于使用的工具,可以帮助用户更好地处理和分析大数据。掌握Hive基础知识对于进行数据仓库的建设和数据分析工作非常重要。 ### 回答3: Hive是一个开源的数据仓库基础架构,运行在Hadoop集群上。以下是关于Hive基础知识选择题的回答: 1. Hive中的数据存储在哪里? 答:Hive中的数据存储在Hadoop分布式文件系统(HDFS)中。 2. Hive中的数据是如何组织的? 答:Hive中的数据是以表(Tables)的形式进行组织的。 3. Hive中的表的结构是如何定义的? 答:Hive中的表的结构是通过DDL语句来定义的,包括表的名称、列名称、数据类型等信息。 4. Hive中的查询语言是什么? 答:Hive中的查询语言类似于SQL,称为HiveQL或HQL。 5. Hive中的查询语句是如何转换为MapReduce作业的? 答:Hive将查询语句转换为逻辑查询计划,然后将逻辑查询计划转换为物理查询计划,最后将物理查询计划转换为MapReduce作业。 6. Hive中的分区表是什么? 答:Hive中的分区表是按照一个或多个列的值分成不同的目录,并且每个目录下存储相应分区的数据。 7. Hive中的桶是什么? 答:Hive中的桶是将数据分成固定数量的文件的一种方式,目的是提高查询性能。 8. Hive中的内部表和外部表有什么区别? 答:内部表的数据和元数据都由Hive管理,删除内部表时会删除表的数据;而外部表的数据和元数据存储在外部的文件系统中,删除外部表时只会删除元数据。 9. Hive中的UDF是什么? 答:UDF全称为用户定义函数(User-Defined Functions),是由用户自定义的用于特定数据处理操作的函数。 10. Hive中的压缩是如何实现的? 答:Hive中的压缩是通过执行MapReduce作业时将数据进行压缩,以减少数据的存储空间和提高查询性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值