深度学习
文章平均质量分 91
yu_tsl
这个作者很懒,什么都没留下…
展开
-
深度学习笔试知识点及面试常考题
深度学习发展史: 忽略前面那些铺垫,直接介绍深度学习爆发期的历史 1. 2012 AlexNet 成功利用relu 代替 sigmoid函数,解决了sigmoid函数的梯度弥散问题 添加了drop out 层,防止过拟合 采用最大池化,代替平均池化 2. 2014 VGG 通过反复堆叠3*3 小型卷积核和2*2 的最大池化层 3. 201...原创 2018-08-29 19:48:03 · 9141 阅读 · 0 评论 -
LSTM介绍
LSTM介绍 LSTM神经网络是为了克服RNN循环神经网络的梯度消失或者梯度爆炸而产生的神经网络。主要的改变是增加了三个门,分别是输入门、输出门和忘记门。下面内容转载于(https://blog.csdn.net/gzj_1101/article/details/79376798) ...转载 2018-09-03 21:04:13 · 4275 阅读 · 0 评论 -
N-gram 模型
N-gram 模型语言模型: 定义了自然语言中标记序列的概率分布,通俗一点考虑就是说,一个句子是自然语句的概率。举例说明:假设用户说了这么一句话:“I have a gun”,因为发音的相似,该语音识别系统发现如下几句话都是可能的候选:1、I have a gun. 2、I have a gull. 3...原创 2018-09-03 22:25:33 · 286 阅读 · 0 评论 -
word2vec 原理
转载于(https://www.cnblogs.com/pinard/p/7160330.html)1. 词向量基础 用词向量来表示词并不是word2vec的首创,在很久之前就出现了。最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。比如我们有下面的5个词组成的词汇表,词"Queen"的序号为2, 那么它的词向量就是(0...转载 2018-09-03 22:26:44 · 357 阅读 · 0 评论 -
word2vect 原理2
转载于(http://www.cnblogs.com/pinard/p/7243513.html)1. 基于Hierarchical Softmax的模型概述 我们先回顾下传统的神经网络词向量语言模型,里面一般有三层,输入层(词向量),隐藏层和输出层(softmax层)。里面最大的问题在于从隐藏层到输出的softmax层的计算量很大,因为要计算所有词的softmax概率,再去找概率最...转载 2018-09-03 22:28:24 · 784 阅读 · 0 评论 -
fast text
转载于(https://blog.csdn.net/john_bh/article/details/79268850)转载请注明作者和出处:http://blog.csdn.net/john_bh/ 一、简介 二、FastText原理 2.1 模型架构 2.2 层次SoftMax 2.3 N-gram特征 三、 基于fastText实现文本分类 3.1 fastTe...转载 2018-09-03 22:54:17 · 881 阅读 · 0 评论