三大统计学相关系数讨论

本文探讨了统计学中的三种相关系数:皮尔森相关、斯皮尔曼相关和肯德尔相关。皮尔森相关适用于连续变量间的线性关系,而斯皮尔曼相关则适合等级资料,对数据条件要求较低。肯德尔相关同样处理等级数据,关注数据序列的位置。这些相关系数在不同情境下提供了衡量变量间关系的工具。
摘要由CSDN通过智能技术生成

  相关系数定义为两个向量之间的相似性,最常用的相关系数是皮尔森相关,但是实际情况更加复杂,因此我们介绍一下统计学中出现的相关系数。

 

一 皮尔森相关

 

皮尔森相关描述两个变量之间的线性相关

 

x,y 为两个变量。

适用条件:

1. 两个变量都是连续变量

2.  每个变量都应该是 正态分布,或者接近正态分布的单峰对称分布

3. 变量之间应该为线性关系

 

当对每个变量进行0均值后,相关性就与余弦距离相同

 

二 斯皮尔曼 相关

  斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法”。

  斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。

总而言之,斯皮尔曼相关的计算将原始数据替

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值