最长公共子序列 —— NYOJ 36

最长公共子序列

时间限制: 3000ms
内存限制: 128000KB
64位整型:      Java 类名:

题目描述

咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。

输入

第一行给出一个整数N(0<N<100)表示待测数据组数
接下来每组数据两行,分别为待测的两组字符串。每个字符串长度不大于1000.

输出

每组测试数据输出一个整数,表示最长公共子序列长度。每组结果占一行。

样例输入

2
asdf
adfsd
123abc
abc123abc

样例输出

3
6

引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

问题的递归式写成:

recursive formula

回溯输出最长公共子序列过程:

flow



#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
char a[1100],b[1100];
int dp[1100][1100];
int main()
{
    int t,len1,len2;
    scanf("%d",&t);
    while(t--){
        scanf("%s%s",a,b);
        len1=strlen(a);
        len2=strlen(b);
        for(int i=0;i<len1;i++){
           for(int j=0;j<len2;j++){
                dp[i][j]=0;
           }
        }
        for(int i=1;i<=len1;i++){
            for(int j=1;j<=len2;j++){
                if(i==0 || j==0) dp[i][j]=0;
                if(a[i-1]==b[j-1])  dp[i][j]=dp[i-1][j-1]+1;
                else      dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
        printf("%d\n",dp[len1][len2]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎轩栀海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值