Description
小茗同学正在玩牧场物语。该游戏的地图可看成一个边长为n的正方形。
小茗同学突然心血来潮要去砍树,然而,斧头在小茗的右下方。
小茗是个讲究效率的人,所以他会以最短路程走到右下角,然后再返回到左上角。并且在路上都会捡到/踩到一些物品,比如说花朵,钱和大便等。
物品只能被取最多一次。位于某个格子时,如果格子上还有物品,就一定要取走。起点和终点上也可能有物品。
每种物品我们将为其定义一个价值,当然往返之后我们取得的物品的价值和越大越好。但是小茗同学正在认真地玩游戏,请你计算出最大的价值和。
Input
多组数据(<=10),处理到EOF。
第一行输入正整数N(N≤100),表示正方形的大小。
接下来共N行,每行N个整数Ai,j(|Ai,j|≤10^9),表示相应对应位置上物品的价值。值为0表示没有物品。
Output
每组数据输出一个整数,表示最大价值和。
Sample Input
211 1416 12
Sample Output
53
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define ll long long
using namespace std;
ll v[110][110],f[210][110][110];
int main()
{
int t,n,m,c;
int i,j,k;
while(scanf("%d",&n)!=EOF){
c=n+n-1;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
scanf("%I64d",&v[i][j]);
memset(f,-0x3f3f3f3f,sizeof(f));
f[1][1][1]=v[1][1];
for(k=2;k<=c;k++) {
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(i!=j)
f[k][i][j]=max(max(f[k-1][i-1][j],f[k-1][i][j-1]),max(f[k-1][i][j],f[k-1][i-1][j-1]))+
v[i][k-i+1]+v[j][k-j+1];
else
f[k][i][j]=max(max(f[k-1][i-1][j],f[k-1][i][j-1]),max(f[k-1][i][j],f[k-1][i-1][j-1]))+
v[i][k-i+1];
}
printf("%I64d\n",f[c][n][n]);
}
return 0;
}