判断无向欧拉图模板

该博客探讨了如何判断一个无向图是否为欧拉图,关键在于图必须连通且所有顶点的度数必须为偶数。通过并查集可以验证图的连通性,同时检查奇度顶点的存在情况。
摘要由CSDN通过智能技术生成

/*判断是否有欧拉回路,即判断是否为欧拉图
条件1:图连通:用并查集判断
2:不含奇度顶点
*/

#include <cstdio>
#include <cstring>
#define N 1000

using namespace std;

int n, m;
int f[N],degree[N];//记录第i点的度数

void init()
{
	for (int i = 1; i <= n; i++)
		f[i] = i;
}

int find(int x)
{
	return x == f[x] ? x : f[x] = find(f[x]);
}

void merge(int x, int y)
{
	int t1, t2;
	t1 = find(x); t2 = find(y);
	if (t1 != t2)	f[t2] = t1;
	else return;
}

int isEuler()
{
	for (int i = 1; i <= n; i++)
		if (degree[i] & 1)	return 0;
	return 1;
}

int isconnect()
{
	int cnt = 0;
	for (int i = 1; i <= n; i++)
	{
		if (f[i] == i)
			cnt++;
	}
	if (cnt == 1)	return 1;
	else return 0;
}

int main()
{
	while (scanf("%d", &n) != EOF && n)
	{
		init();
		memset(degree, 0, sizeof(degree));
		scanf("%d", &m);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值