论文阅读:Joint Learning of Single-image and Cross-image Representations for Person Re-identification

哈尔滨工业大学的研究者提出一种结合pairwise comparison与triplet comparison的方法用于特征学习,并通过实验验证了该方法的有效性。该研究关注于SIR与CIR两种表征方式,并在多个数据集上进行了对比实验。

哈尔滨工业大学(/香港理工大学)的作者Faqiang Wang等采用pairwise comparison and triplet comparison联合学习特征,并在CUHK03,CUHK03,VIPeR上进行实验。

网络结构:
这里写图片描述

这里写图片描述

文章分析了SIR(single image representation) 是CIR(cross image representation)的特殊形式。(欧式距离,马氏距离,联合贝叶斯,LDFA)

### VLTSeg 方法及其在领域自适应语义分割中的应用 VLTSeg(Vision-Language Transfer Segmentation)是一种基于 CLIP(Contrastive Language–Image Pretraining)的视觉-语言模型,专门用于领域自适应语义分割任务。该方法利用了 CLIP 的强大跨模态表示能力,通过结合视觉和语言信息来提升模型在未见领域上的泛化能力。 在领域自适应语义分割中,目标是将源领域(带有标注数据)上训练的模型有效地迁移到目标领域(无标注或部分标注数据)上,而无需重新标注目标领域的数据。VLTSeg 的核心思想是利用 CLIP 模型生成的文本嵌入作为语义先验,以增强模型对目标领域中未见类别的识别能力。具体来说,该方法通过以下步骤实现: 1. **文本嵌入生成**:使用 CLIP 的文本编码器为每个类别生成对应的文本嵌入。这些嵌入捕捉了类别的语义信息,并且可以在不同领域之间保持一致性。 2. **视觉-语言对齐**:在训练过程中,将图像中的每个像素与对应的文本嵌入进行对齐。这种对齐过程通过对比学习实现,使得模型能够学习到跨模态的语义关联。 3. **领域自适应策略**:为了应对领域差异,VLTSeg 引入了领域自适应策略,例如通过对抗训练或特征对齐技术,减少源领域和目标领域之间的分布差异。 4. **推理阶段**:在推理阶段,模型利用 CLIP 的文本编码器生成的文本嵌入作为查询,对输入图像进行分割。这种方法使得模型能够处理目标领域中未见的类别,因为它依赖于文本嵌入的语义信息,而不是仅依赖于源领域的标注数据。 VLTSeg 的优势在于其能够利用 CLIP 的强大语义表示能力,从而在领域自适应任务中表现出色。特别是在目标领域中存在未见类别的情况下,该方法通过结合语言信息显著提升了模型的泛化能力。 ### 代码示例 以下是一个简化的 VLTSeg 方法的伪代码示例,展示了如何利用 CLIP 进行视觉-语言对齐: ```python import clip import torch from torchvision import transforms # 加载预训练的 CLIP 模型 device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) # 定义类别名称 class_names = ["road", "building", "sky", "person", "car"] # 生成文本嵌入 text_inputs = clip.tokenize([f"a photo of a {class_name}" for class_name in class_names]).to(device) with torch.no_grad(): text_features = model.encode_text(text_inputs) text_features /= text_features.norm(dim=-1, keepdim=True) # 图像预处理 image_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) # 加载图像并生成图像特征 image = image_transform(preprocess(Image.open("example.jpg"))).unsqueeze(0).to(device) with torch.no_grad(): image_features = model.encode_image(image) image_features /= image_features.norm(dim=-1, keepdim=True) # 计算相似度并进行分割 similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) segmentation_mask = similarity.argmax(dim=-1) ``` ### 相关问题 1. 如何在实际应用中优化 VLTSeg 的领域自适应性能? 2. CLIP 模型在视觉-语言任务中的局限性是什么? 3. 领域自适应语义分割中还有哪些其他方法可以与 VLTSeg 进行比较? 4. 如何评估 VLTSeg 在未见领域上的泛化能力? 5. 在 VLTSeg 中,如何选择合适的文本嵌入生成策略?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值