MySQL

本文详细介绍了MySQL的存储引擎(MyISAM与InnoDB的区别)、事务特性与隔离级别、并发控制中的锁机制、索引结构(包括聚簇索引和非聚簇索引)、以及分库分表原理和读写分离策略。
摘要由CSDN通过智能技术生成

一、MySQL有哪几种数据存储引擎?有什么区别?

MySQL中通过show ENGINES指令可以看到所有支持的数据库存储引擎。 最为常用的就是MyISAM 和InnoDB 两种。

MyISAM和InnDB的区别:

1、存储文件。 MyISAM每个表有两个文件。 MYD和MYISAM文件。 MYD是数据文件。 MYI是索引文件。 而InnDB每个表只有一个文件,idb。

2、InnoDB支持事务,支持行级锁,支持外键。

3、InnoDB支持XA事务

4、InnoDB支持savePoints

二、什么是脏读、幻读、不可重复读?要怎么处理?

这些问题都是MySQL进行事务并发控制时经常遇到的问题。

脏读: 在事务进行过程中,读到了其他事务未提交的数据。

不可重复读: 在一个事务过程中,多次查询的结果不一致。

幻读: 在一个事务过程中,用同样的操作查询数据,得到的记录数不相同。

处理的方式有很多种:加锁、事务隔离、MVCC

加锁:

1、脏读:在修改时加排他锁,直到事务提交才释放。读取时加共享锁,读完释放锁。

2、不可重复读: 读数据时加共享锁,写数据时加排他锁。

3、幻读: 加范围锁。

三、事务的基本特性和隔离级别有哪些?

事务: 表示多个数据操作组成一个完整的事务单元,这个事务内的所有数据操作要么同时成功,要么同时失败。

事务的特性:ACID

1、原子性:事务是不可分割的,要么完全成功,要么完全失败。

2、一致性:事务无论是完成还是失败,都必须保持事务内操作的一致性。当失败时,都要对前面的操作进行回滚,不管中途是否成功。

3、隔离性:当多个事务操作一个数据的时候,为防止数据损坏,需要将每个事务进行隔离,互相不干扰。

4、持久性: 事务开始就不会终止。他的结果不受其他外在因素的影响。

事务的隔离级别:SHOW VARIABLES like ‘transaction%’

设置隔离级别: set transaction level xxx 设置下次事务的隔离级别。

set session transaction level xxx 设置当前会话的事务隔离级别

set global transaction level xxx 设置全局事务隔离级别

MySQL当中有五种隔离级别

NONE : 不使用事务。

READ UNCOMMITED: 允许脏读

READ COMMITED: 防止脏读,最常用的隔离级别

REPEATABLE READ:防止脏读和不可重复读。MYSQL默认

SERIALIZABLE: 事务串行,可以防止脏读、幻读,不可重复度。

五种隔离级别,级别越高,事务的安全性是更高的,但是,事务的并性能也就会越低。

四、MySQL的锁有哪些?什么是间隙锁?

从锁的粒度来区分

1、行锁:加锁粒度小,但是加锁资源开销比较大。 InnDB支持。

​ 共享锁: 读锁。多个事务可以对同一个数据共享同一把锁。持有锁的事务都可以访问数据,但是只能读不能修改。select xxx LOCK IN SHARE MODE。

​ 排他锁: 写锁。只有一个事务能够获得排他锁,其他事务都不能获取该行的锁。InnoDB会对update\delete\insert语句自动添加排他锁。SELECT xxx FOR UPDATE。

​ 自增锁: 通常是针对MySQL当中的自增字段。如果有事务回滚这种情况,数据会回滚,但是自增序列不会回滚。

2、表锁:加锁粒度大,加锁资源开销比较小。MyISAM和InnoDB都支持。

​ 表共享读锁

​ 表排他写锁

​ 意向锁:是InnoDB自动添加的一种锁,不需要用户干预。

3、全局锁: Flush tables with read lock 。 加锁之后整个数据库实例都处于只读状态。所有的数据变更操作都会被挂起。一般用于全库备份的时候。

常见的锁算法: user: userid ( 1,4,9) update user set xxx where userid=5; REPEATABLE READ 间隙锁锁住(5,9)

1、记录锁:锁一条具体的数据。

2、间隙锁:RR隔离级别下,会加间隙锁。锁一定的范围,而不锁具体的记录。是为了防止产生幻读。(-xx,1)(1,4)(4,9)(9,xxx)

3、Next-key : 间隙锁+右记录锁。(-xx,1](1,4](4,9](9,xxx)

五、MySQL的索引结构是什么样的?聚簇索引和非聚簇索引又是什么?

二叉树 -》 AVL树 -》 红黑树 -》 B-树 -》 B+树

二叉树: 每个节点最多只有两个子节点, 左边的子节点都比当前节点小,右边的子节点都比当前节点大。

AVL树: 树中任意节点的两个子树的高度差最大为1

红黑树:1、每个节点都是红色或者黑色。2 根节点是黑色。3 每个叶子节点都是黑色的空节点。4 红色节点的父子节点都必须是褐色。5 从任一节点到其每个叶子节点的所有路径都包含相同的黑色节点。

B-树: 1、B-树的每个非叶子节点的子节点个数都不会超过D(这个D就是B-树的阶)2、所有的叶子节点都在同一层。3.所有节点关键字都是按照递增顺序排列。

B+树: 1、非叶子节点不存储数据,只进行数据索引。2、所有数据都存储在叶子节点当中。3、每个叶子节点都存有相邻叶子节点的指针。4、叶子节点按照本身关键字从小到大排序。

聚簇索引就是数据和索引是在一起的。

MyISAM使用的是非聚簇索引,树的子节点上的data不是数据本身,而是数据存放的地址。InnoDB采用的是聚簇索引,树的叶子节点上的data就是数据本身。

聚簇索引的数据物理存放顺序和索引顺序是一致的,所以一个表当中只能有一个聚簇索引,而非聚簇索引可以有多个。

​ InnoDB中,如果表定义了PK,那PK就是聚簇索引。 如果没有PK,就会找第一个非空的unique列作为聚簇索引。否则,InnoDB会创建一个隐藏的row-id作为聚簇索引。

MySQL的覆盖索引和回表

​ 如果只需要在一颗索引树上就可以获取SQL所需要的所有列,就不需要再回表查询,这样查询速度就可以更快。

​ 实现索引覆盖最简单的方式就是将要查询的字段,全部建立到联合索引当中。

​ user(PK id , name ,sex)

select count(name) from user ; -> 在name 字段上建立一个索引。

select id , name ,sex from user; -> 将name上的索引升级成为(name,sex)的联合索引。

六、MySQL的集群是如何搭建的?读写分离是怎么做的?

MySQL通过将主节点的Binlog同步给从节点完成主从之间的数据同步。
在这里插入图片描述

MySQL的主从集群只会将binlog从主节点同步到从节点,而不会反过来同步。由此也就引申出了读写分离的问题。

因为要保证主从之间的数据一致,写数据的操作只能在主节点完成, 而读数据的操作,可以在主节点或者从节点上完成。

七、谈谈如何对MySQL进行分库分表?多大数据量需要进行分库分表?分库分表的方式和分片策略由哪些?分库分表后,SQL语句的执行流程是怎样的?

什么是分库分表? 就是当表中的数据量过大时,整个查询效率就会降低得非常明显。这时为了提升查询效率,就要将一个表中的数据分散到多个数据库的多个表当中。

分库分表最常用的组件: Mycat\ ShardingSphere

数据分片的方式有垂直分片和水平分片。垂直分片就是从业务角度将不同的表拆分到不同的库中,能够解决数据库数据文件过大的问题,但是不能从根本上解决查询问题。水平分片就是从数据角度将一个表中的数据拆分到不同的库或表中,这样可以从根本上解决数据量过大造成的查询效率低的问题。

有非常多的分片策略,比如 取模、按时间、按枚举值。。。。

阿里提供的开发手册当中,建议:一个表的数据量超过500W或者数据文件超过2G,就要考虑分库分表了。
SQL执行流程:
在这里插入图片描述

一个user表,按照userid进行了分片,然后我需要按照sex字段去查,这要怎么查?强制指定只查一个数据库,要怎么做?查询结果按照userid来排序,要怎么排?

分库分表的问题: 垮库查询、跨库排序、分布式事务、公共表、主键重复。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值