我的创作纪念日

终不似少年游 *:256 天创作之路的纪念与回望

今天收到 CSDN 的创作纪念邀请,才惊觉 “終不似少年游 *” 这个账号已经陪伴我走过了 256 天的创作旅程。从最初的蹒跚起步到如今的习惯成自然,这段旅程里藏着太多关于技术、成长与热爱的故事,借着这个契机,想和大家聊聊我的创作初心、收获与对未来的憧憬。

机缘:始于记录,忠于热爱

成为创作者的初心其实很简单 ——“怕遗忘,更盼交流”。作为一名深耕人工智能、Python 和云计算领域的学习者,我在日常学习和项目实战中总少不了踩坑、试错与顿悟的瞬间。最初只是想把这些碎片化的经验整理成文字,比如深度学习模型调参时的关键技巧、Python 爬虫实战中的反爬策略、云计算平台部署 AI 模型的踩坑指南,既是给自己的学习留一份 “存档”,也希望能帮到同样在技术路上摸索的同行者。

后来慢慢发现,文字不仅是记录的工具,更是技术交流的桥梁。当看到评论区有人说 “你的 ResNet 训练教程帮我解决了卡了一周的问题”,或是有人在私信里讨论大模型应用的落地思路时,我突然明白:创作不只是 “输出”,更是和同频者的双向奔赴。

收获:在反馈中成长,于同行中温暖

256 天的创作里,最珍贵的收获从来不止于数据,更在于那些藏在数字背后的温度与成长。虽然粉丝数量不算庞大,但每篇文章的阅读量、点赞和评论都像一颗颗星星,照亮了我的技术之路 —— 有读者特意留言感谢我分享的 “云计算进阶学习” 系列,说帮他理清了云服务器部署的逻辑;也有同行在评论区补充更优的算法实现思路,让我在交流中拓宽了技术视野。

更幸运的是,通过创作认识了一群志同道合的朋友:有专注 NLP 的算法工程师,有深耕云计算架构的技术大佬,还有刚入门 Python 的学弟学妹。我们在评论区讨论技术细节,在私信里分享行业动态,这种 “隔着屏幕却心意相通” 的联结,让技术之路少了孤单,多了温暖。

日常:让创作成为学习的 “反光镜”

对我而言,创作早已融入学习与工作的日常。作为一名技术从业者,我习惯把工作中遇到的问题、学习时的新感悟即时记录下来,晚上或周末再抽时间梳理成文章。比如上周在做大模型部署项目时,摸索出了一套 “云计算 + 容器化” 的高效部署方案,周末就整理成《大模型轻量化部署:从云端到边缘的实践指南》,既巩固了知识,又产出了内容。

其实平衡创作与工作学习的秘诀,就是让两者 “互相滋养”:工作中遇到的痛点成为创作素材,创作时的深度梳理又反推我把技术原理挖得更透。现在打开编辑器写文章,已经像打开 IDE 写代码一样自然。

成就:一段让我骄傲的 “图像分类实战代码”

如果说过去 256 天里写得最满意的代码,当属去年在计算机视觉项目中用到的 “基于 PyTorch 的 ResNet 图像分类训练脚本”。这段代码虽然不算复杂,却凝结了我对深度学习训练流程的理解,也帮很多读者入门了图像分类任务:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 加载数据集
train_dataset = datasets.ImageFolder('train_data/', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

# 加载预训练ResNet模型
model = models.resnet18(pretrained=True)
# 冻结部分参数,微调分类头
for param in model.parameters():
    param.requires_grad = False
model.fc = nn.Linear(model.fc.in_features, 10)  # 适配10分类任务

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.fc.parameters(), lr=0.001)

# 训练模型
model.train()
for epoch in range(10):
    running_loss = 0.0
    for inputs, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    print(f'Epoch {epoch+1}, Loss: {running_loss/len(train_loader):.4f}')

print("训练完成!")
torch.save(model.state_dict(), 'resnet18_finetuned.pth')

这段代码的核心是通过 “迁移学习 + 微调” 快速实现图像分类,既体现了深度学习的工程实践思路,也兼顾了可读性,很多读者留言说通过它理解了迁移学习的精髓,这让我特别有成就感。

憧憬:让技术的光,照亮更远的路

展望未来,我的职业规划依然锚定在人工智能领域,尤其想深耕大模型与计算机视觉的结合方向,探索更多落地场景。而创作规划则会和职业成长深度绑定:

短期会持续更新 “大模型实战系列”,从 Prompt Engineering 到模型微调,再到结合云计算的部署方案,争取让每个教程都 “能跑通、有细节”;长期希望能输出更深度的技术内容,比如开源一个轻量化的视觉大模型工具包,或是写一本关于 “AI + 云计算” 融合应用的实战指南。

更期待的是,未来的博客能成为一个 “技术交流站”—— 不仅有我的输出,更有大家的碰撞。希望 256 天后的下一个纪念日,我们能一起回头看:原来我们都在技术路上,走了这么远。

最后,感谢 CSDN 的陪伴,也感谢每一位读者的支持。技术之路漫漫,愿我们都能在热爱里,步履不停。我的博客主页:終不似少年遊*-CSDN博客,期待和你在评论区相遇~

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值