关于pytorch中张量(Tensor)a.shape的全面解读

关于pytorch中张量(Tensor)a.shape的解读,很多人对shape的输出感到迷惑,今天就带你们解读一下shape的全方面教学。

设a=torch.rand(5,3,32,32)
可简单理解为是5张每张3个通道的尺寸32*32的图片。
后续都是根据a来展开讨论的。

##即取前三张图片,每张3通道尺寸是32*32图片。
in: a[:3].shape
out: torch.size([3,3,32,32])

##取前三张图片,每张第2,3通道的32*32图片。
in: a[:3,1:].shape
out: torch.size([3,2,32,32])

##取前三张图片,每张第1通道的32*32的图片。
in: a[:3,:1].shape
out: torch.size([3,1,32,32])

##取前两张图片,每张中的第三个通道的32*32的图片。
in: a[:2,-1:].shape
out: torch.size([3,1,32,32])

##start: end: 隔几个数字,取所有图片所有通道的行列每个一行或者一列。
in: a[:,:,0:32:4,0:32:4]
out: torch.size([5,3,8,8])

##把所有的行保留,第一列之后的全部输入。即取所有图片的2,3通道的28*28图片。
in: a[:,1:]
out: torch.size([5,2,32,32])

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值