- 博客(11)
- 资源 (11)
- 收藏
- 关注
原创 多智能体MAPPO代码环境配置以及代码讲解
多智能体MAPPO代码环境配置以及代码讲解MAPPO代码环境配置代码文件夹内容讲解配置开始配置完成后的一些常见问题小技巧现在我还在学MAPPO,若还有好技巧会在这篇文章分享,需要MAPPO后期知识的小同学可以关注我哦!MAPPO代码环境配置MAPPO是2021年一篇将PPO算法扩展至多智能体的论文,其论文链接地址为:https://arxiv.org/abs/2103.01955对应的官方代码链接为https://github.com/marlbenchmark/on-policy代码文件夹内容讲解
2021-11-23 20:59:25 10250 8
原创 Point Cloud Transformer(PCT)代码实现
Point Cloud Transformer(PCT)代码实现目前最火热的Transformer在自然语言和图像识别中扮演了极其重要的角色,在点云数据集中也不例外,清华大学近期提出在点云中运用Transformer准确率可达93%左右。PCT论文链接:Point Cloud Transformer(PCT)清华大学官方代码是Jittor所编写的,尚未真正的开源,其代码链接为:Jittor编写的PCT而本篇论文所引用的是由Pytorch所编写的PCTPCT-Pytorch目前我在钻研此论文,看明白
2021-05-24 15:01:02 5771 42
原创 一文读懂Q-Learning,DQN,DDPG的连接关系
最近几个月一直在看强化学习,把强化学习导论(Reinforcement Learning:An Introduction)跟着b站视频看了一遍,发现书上的大部分是理论,实践代码并不多,所以可以看看知乎David Silver强化学习公开课中文讲解及实践,看完之后呢就会发现,强化学习在沿着解决连续动作和深度卷积神经网络逼近值函数来解决问题。下面先写出目前所学到的知识,后期会继续更新。1.Q-LearningQ-Learning是强化学习算法中极其重要的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下,
2021-03-24 14:36:45 5169 2
原创 行为识别C3D代码(pytorch)实现过程及常见错误
行为识别C3D代码(pytorch)实现过程及常见错误1.C3D网络代码C3D(pytorch)实现代码链接:C3D代码2.C3D代码复现过程(1)环境要求pytorch版本:(1)数据集的制作首先将UCF-101的数据集结构存储为以下形式:...
2021-01-31 11:46:31 8891 191
原创 行为识别常用数据集
行为识别常用数据集学校放假后主要看深度学习中的行为识别论文和强化学习书籍。行为识别中的C3D,I3D,P3D等等论文都用到了UCF-101和hmdb51数据集,但是我最近在网上查找这两个数据集挺困难,尤其UCF-101,体积又大,而且在斜体样式官网下载很慢很慢。最后找某网盘的UCF-101,但是某盘对UCF-101数据集进行封锁了。所以我运用了各种手法最后得到了UCF-101和hmdb51数据集,大家需要的话再评论区留言。谢谢粉丝的大力支持。...
2021-01-24 15:42:20 1536 24
原创 pytorch中tensorboard安装及安装过程中出现的常见错误
安装步骤1.在anaconda prompt环境下安装tensorboard(1)激活pytorch环境activate pytorch(2)安装tensorboardPip install tensorboard安装起来还是比较快的,tensorboard占用存储也小,所以网慢也会很快安装好。使用tensorboard在终端或者pycharm中输入以下代码字段import torchimport torchvisionfrom torch.utils.tensorboard
2020-12-21 09:51:09 15952 11
原创 学习ROI Pooling的简单笔记
region proposal给定一张输入image找出objects可能存在的所有位置。这一阶段的输出应该是一系列object可能位置的bounding box。这些通常称之为region proposals或者 regions of interest(ROI),在这一过程中用到的方法是基于滑窗的方式和selective search。selsective search策略:既然是不知道尺度是怎样的,那我们就尽可能遍历所有的尺度好了,但是不同于暴力穷举,我们可以先得到小尺度的区域,然后一次次合并得到
2020-12-15 22:04:30 279 1
原创 pytorch实现自己制作图像训练集测试集代码(二)
我在某哥查资料时,发现了另一种用pytorch自己制作图像集的方法,操作更加简便的,现在分享给大家。第二篇pytorch实现自己制作图像集代码:from torchvision.datasets import ImageFolderfrom torchvision import transformsROOT_TRAIN = r'D:/pycharm/pychanrm项目文件/data/已知类别' #训练路径ROOT_TEST = r'D:/pycharm/pychanrm项目文件/data/待分
2020-12-09 16:42:21 1268 3
原创 pytorch实现自己制作训练集和测试集
pytorch可用于图像识别,但我们现在绝大部分用的是MINIST和cifar10图片,想要用自己的训练和测试图像路径,需要制作读取训练集和测试集的代码。本文讲述pytorch实现读取训练集和测试集通用代码。首先讲一下读取图片路径的框架:torch.utils.data.Dataset是一个pytorch用来表示数据集的抽象类,我们用这个类来处理自己的数据集时必须继承Dataset,然后重写下面的函数:len:使得len(dataset)返回数据集的大小getitem:使得支持dataset[i]能
2020-12-06 11:08:57 4413 3
原创 关于pytorch中张量(Tensor)a.shape的全面解读
关于pytorch中张量(Tensor)a.shape的解读,很多人对shape的输出感到迷惑,今天就带你们解读一下shape的全方面教学。a=torch.tensor([4,3,28,28])##第一个维度从0~2,取前两个维度in: a[:2].shapeout: torch.size([2,3,28,28])##第一个维度从0–2,前两个维度,第二个维度0~1,取前两个维度in: a[:2,:1,:,:].shapeout: torch.size([2.1.28.
2020-11-21 14:50:56 15933 4
原创 关于最新版本GPU下pytorch实现卷积神经网络实现手写数字识别的代码
最全的卷积神经网络实现手写数字识别,由于版本的更新,好多函数被替代或简化,本文是根据最新版本的GPU11.0的pytorch撰写的卷积神经网络实现手写数字识别。欢迎大家借鉴。import torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torchvision import datasets, transformsimport torchvisionfrom.
2020-11-17 19:28:16 536
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人