DeepSeekR1之五_RAGFlow中配置DeepSeekR1模型时错误问题及处理

DeepSeekR1之五_RAGFlow中配置DeepSeekR1模型时错误问题及处理

1. RAGFlow配置DeepSeekR1错误

提示 : 102

Fail to access model(deepseek-r1:1.5b).ERROR: [Errno 111] Connection refused

在这里插入图片描述

2. 问题排查

1. 问题排查

排查Ollama是否正常运行,输入 http://127.0.0.1:11434 如下

在这里插入图片描述

经查 ollama运行正常

2. 原因分析

出现这个问题,是因为我们的RAGFlow搭建在Docker容器里面,如果没有做端口穿透的话,RAG就会尝试访问容器内的11434端口,从而造成访问失败。

3. 问题解决

1. 更改Ollama监听端口使其在所有域名上都生效

新建一个环境变量,具体配置如下:

变量名:OLLAMA_HOST

变量值::11434

端口可以任意修改,冒号前保持为空相当于在所有IPv4IPv6地址上监听

在这里插入图片描述

2. 退出Ollama

在操作系统右下角的通知面板中找到Ollama图标并点击然后找到Quit Ollama退出

3. 重新打开Ollama

从应用程序中打开Ollama即可

4. 再次配置问题解决

注意:基础URL中的IP地址一定要写成IPV4地址,如192.168.31.13,如果写成127.0.0.1则也会出现102错误问题

在这里插入图片描述

点击确定按钮后,提示更新成功,如下图

在这里插入图片描述

### 配置 DeepSeek R1 模型中的 Cursor 参数 在配置 DeepSeek R1 模型,Cursor 是一个重要的工具,它可以帮助开发者更高效地编写和调试代码。为了确保最佳性能和用户体验,合理设置 Cursor 的参数至关重要。 #### 1. 安装依赖库 首先,需要安装必要的 Python 库来支持 DeepSeek R1 和 Cursor 的集成。这可以通过 pip 来完成: ```bash pip install deepseek-cursor ``` #### 2. 初始化 DeepSeek R1 模型 初始化模型,可以指定一些基本参数,如模型路径、设备类型(CPU 或 GPU)。这些参数会影响后续 Cursor 的行为。 ```python from deepseek import DeepSeekModel model = DeepSeekModel(model_path="path/to/deepseek-r1", device="cuda") ``` #### 3. 设置 Cursor 参数 针对 Cursor 工具本身,有多个可调节的参数以适应不同的应用场景。以下是几个常见的配置选项及其说明: - **max_tokens**: 控制生成的最大 token 数量,默认值通常为 512。 - **temperature**: 调整输出的概率分布宽度,取值范围一般在 (0, 1] 之间,较低温度会使得输出更加保守[^1]。 - **top_p**: 实现核采样策略,只考虑累积概率达到 top_p 的候选词,有助于提高生成质量的同保持多样性。 - **stop_sequences**: 列表形式定义结束序列,当遇到列表内的任意字符串停止生成新内容。 具体实现如下所示: ```python cursor_config = { "max_tokens": 1024, "temperature": 0.7, "top_p": 0.9, "stop_sequences": ["\n\n"] } model.set_cursor_params(**cursor_config) ``` #### 4. 使用 Cursor 进行交互式编程 一旦完成了上述配置步骤,就可以利用 Cursor 开始互动式的编码工作流了。例如,在 Jupyter Notebook 中实获取代码建议或自动补全功能。 ```python # 假设已经加载了一个待编辑的文件片段到变量 code_snippet 中 suggestions = model.get_code_suggestions(code_snippet) for suggestion in suggestions: print(suggestion) ``` 通过这种方式,不仅提高了开发速度,还减少了潜在错误的发生几率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值