自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(46)
  • 收藏
  • 关注

原创 图像生成文本show and tell模型7—图片特征提取

定义一个类用来给caption model调数据:

2019-09-09 13:47:55 491

原创 图像生成文本show and tell模型6—文本描述转换为id表示

1.复制代码:2. 将文字转换成id:3.验证一下:以上~ 完成 ~

2019-09-09 13:35:20 307

原创 图像生成文本show and tell模型5—词表载入

1.定义一个类叫做词表:2.定义一些赋值函数:实现两个赋值函数,实现id到word、word到id的转换:其他的一些赋值函数:构建完成~3.测试一下:完成~...

2019-09-09 13:27:37 234

原创 图像生成文本show and tell模型4—输入输出文件与默认参数定义

1.对实现过程进行设计:2.引入必要的库,定义好输入输出的文件夹:3.定义模型所需要的参数:4.

2019-09-09 12:52:53 268

原创 图像生成文本show and tell模型3—图像特征抽取3—InceptionV3预训练模型抽取图像特征

在有了图片的名字之后就可以依据图片的名字在文件夹下读取对应的文件,然后使用模型将图片的特征提取出来:1.载入模型:载入模型文件2.模型读取:定义模型读取函数:3.使用tensorflow打开一个session对我们的图片进行处理:计算有多少个子文件:进行处理:运行结果:以上~图像预处理部分完成 ~...

2019-09-07 13:35:25 418

原创 图像生成文本show and tell模型2—图像特征抽取2—文本描述文件解析

用已经训练好的模型对每张图片去处理特征:本文使用的是 inception_V3的checkpoint去对flicker30k的每张图片进行处理它的特征:需要用到的文件:这个文件的作用:checkpoint里存的是各个变量的数值,我们需要重新去构建计算图后可以把checkpoint里的变量值载入进来,就是这个图中对应的变量去checkpoint读取变量值,在tensorflow中还支持对c...

2019-09-07 13:01:33 640

原创 图像生成文本show and tell模型1—图像特征抽取1—数据介绍、词表生成

1.数据集:flicker30k下载使用链接:https://blog.csdn.net/gaoyueace/article/details/805646422.针对两种数据的存放格式做一个描述放在它的描述文件中:(1)对于图像处理:提取图像特征:在show and tell模型中是用一个CNN去提取,提取出来之后这个图像特征就不变了:先把所有图像的图像特征都抽取出来,然后在模型训...

2019-09-07 12:05:27 752

原创 TextCNN实现(基于TextRNN修改)

本次只实现3*3的卷积核修改构建图的code:1.因为换了模型,所以需要换参数:删掉:添加参数:2.更改计算图的构建:注释掉lstm的实现:实现TextCNN:定义初始化函数:开一个新的运行空间:将max_pooling层接到fc上:修改train_op:直接用optiliarzer即可,不用做clip:3.运行效果:可以发现TextCNN训练速度比...

2019-09-05 16:11:41 322

原创 RNN7—LSTM单元内部结构实现

修改的是模型的网络架构部分:所以在模型的网络架构部分的cell修改即可:1.注释掉:2.LSTM的网络结构:实现这个网络结构:(1)定义一个函数来生成每一组参数:(2)实现输入门、输出门、遗忘门和转换门:两个初始化的值:一个是中间的隐含状态:另一个是最初始化的h:用一个for循环实现LSTM:计算遗忘门、输入门、输出门:计算输入的变换tanh:更新输入的...

2019-09-05 15:38:57 681

原创 RNN6—LSTM文本分类模型实现4—训练流程实现

1.返回值:将返回值变成3个元组放在一个大的元组里:2.写训练流程code:(1)初始化变量:定义初始必要值:初始化整个网络:训练:写出需要打印的值:训练效果:...

2019-09-05 14:54:08 603

原创 RNN5—LSTM文本分类模型实现3—计算图输入定义

1.定义一个函数,实现文本分类的模型:定义一个获得类别数目的api:测试:效果:添加上两个变量:2.将必要的参数从超参数集合里取出来,防止在后面经常用到:定义输入、输出和drop out用到keep_prob:定义能记录和保存现在训练到哪一步的global_step:3.正式构建文本分类的模型:定义embedding层的初始化函数:定义LSTM层:定义一个...

2019-09-05 14:42:20 251

原创 RNN4—LSTM文本分类模型实现2—数据集的封装

1.封装数据集:解析文件(解析文件的过程就是把inputs和outputs填充的过程):

2019-09-05 12:50:12 570

原创 RNN3—LSTM文本分类模型实现1

谋篇布局:tf里除了print外还能够打印的函数:1.定义lstm需要的参数:

2019-09-04 19:19:59 599

原创 RNN2—数据预处理2—词表生成与类别表生成

1.构建词表:输入:分词后的结果文件用保存词频信息对空格进行拆分,统计词频:按词频进行逆排序:将上面的结果输出到输出文件中:在训练集上生成词表:2.生成label信息:对label进行统计:把对应的值输出到文件中:打印出每个类别的数据量分布:调用函数 生成文件:以上~预处理的过程就进行完辽 ~...

2019-09-04 17:19:06 628

原创 备忘1—CNN VGG Inception等各种网络结构对比/RNN、RCNN/GAN/AutoML

最近把代码整理完,后期来填坑,组会选一个专题讲

2019-09-04 16:15:43 663

原创 RNN1—数据预处理1—分词

数据集下载:https://download.csdn.net/download/w1632651707/10582536分词1.引入必要的库:2.定义3个输入文件:3.定义输出文件,即这三个输入文件的分词结果:4.词表文件(定义了词语到id的转换的映射和label到id的映射):5.下载jieba 安装:https://download.csdn.net/download/we...

2019-09-04 15:41:07 562

转载 用pip下载安装

https://blog.csdn.net/xiakejiang/article/details/82720815

2019-09-03 19:20:54 181

原创 图像风格转换1—V1算法—预训练模型格式

1.先从网络上下载一个VGG16/19的网络模型https://download.csdn.net/download/qq_34191294/111603432.查看这个文件:3.解析一下文件中具体的参数:4.看一下具体某个卷积层里的参数:5.看一下全连接层的具体参数:...

2019-09-03 15:34:14 477

原创 图像风格转换2—V1算法—预训练模型读取及函数封装

.因为预训练文件是numpy格式,所以不能用tensorflow里restore check points的方法去恢复这个模型图:(1)实现一个类,这个类可以实现VGGnet的一个网络架构,同时将模型中的参数读取进来,载入到这个架构中去:引入必要的库:引入3个常量:做图像在RGB三个通道上了处理:实现一个可以搭建VGGNet结构的类,再从模型文件中读取参数:实现几个可以将参数从d...

2019-09-03 15:11:04 328

原创 神经网络实战记录17—调参技巧8—批归一化(基于vgg-tensorboard-data_aug-deeper)

1.上一节的封装能够让我们更方便地添加batch normalization的效果因为bn在每一个卷积层的后面进行添加2.添加bn:对比注释:3.在每一个conv层加上istraining:pooling层不需要加以上,bn就可以正常使用了~4.训练效果:这些只是在VGG上进行调参优化,还可以把同样的调参技巧用到RestNet等其他神经网络模型中去,可以达到更高的准确率(94...

2019-09-03 12:45:13 579

原创 神经网络实战记录16—调参技巧7—封装(基于vgg-tensorboard-data_aug-deeper)

抽取共有参数,形成默认参数:1.封装conv_2d的api2.封装pooling_2d:3.将代码进行转换:由此,三个卷积层和一个池化层用这几行代码就实现了,就不需要每一次都去指定参数了conv2 conv3 和 poiling2 pooling3的处理方法相同:由此,构建卷积神经网络的代码就变得非常简洁:...

2019-09-03 12:26:16 421

原创 神经网络实战记录15—调参技巧6—加深层次(基于vgg-tensorboard-data_aug)

1.为了让神经网络的层次更深,依据VGG的思想,在卷积层的后面再加入一个33的卷积层,在三个poolig之前都加一个33的卷积层pooling层的输入要改成1_3、2_3、3_3由此,就将6个卷积层拓展成为9个卷积层,由本来7(6+1个全连接层)个层次的神经网络变为了10(9+1个全连接层)个层次的神经网络效果:...

2019-09-03 11:43:04 711

原创 神经网络实战记录14—调参技巧5—如何将图像增强技巧添加到已有的code中(基于VGGTensorboard)

方法一:在计算图的构建中,把图像增强的方法应用到x_image中去;方法二:在feed_dict传入图像之前,将图像从一维向量变为三维向量,即在feed_dict之前就将图像做处理;*本文使用方法一:1.修改输入:将:改为:将:改为:将:因为x_image已经是一个四维的向量,所以就不需要再reshape了2.处理cifar10样本的三种技术:(1)随机翻转...

2019-09-02 17:46:41 375

原创 神经网络实战记录13—调参技巧4— data_aug_utils

1.正常地打开一个图片:2.图像缩放:3.图像裁剪:4.图像翻转:5.亮度和对比度:

2019-09-02 15:27:52 467

原创 神经网络实战记录12—调参技巧3— activation-initializar-optimizer(基于VGGNet tensorboard代码改)

1.2.activation:(1)修改之前activation:将activation做一个封装:然后把之前每一个conv里定义的activation都进行修改:(2)把X_image变成inputs:(3)(4)...

2019-09-02 14:10:12 218

原创 神经网络实战记录11—调参技巧2—fine-tune(基于VGGNet tensorboard代码改)

1.fine-tune的基本思想:不使用随机数来初始化,而使用之前已经创建好的模型来做初始化2.使用fine-tune的步骤:第一步:save models创建model文件夹,并用saver保存文件:并不是每一次训练都保存,这里设置为每100步保存一次:效果:可以在文件夹中看到所保存的文件:以上~ 第一步 save models就做完了 ~第二步:restore m...

2019-08-27 17:00:16 967

原创 神经网络实战记录10—调参技巧1—可视化(基于VGGNet)

1.生成tensorboard需要做的事情:2.步骤:第一步:指定面板图上显示的变量:(1)指定loss和accuracy的总结:(2)给输入图像建立总结:输入图像不是一个值,而是一个32*32的3通道的图像,但是x_image因为是一个归一化后的值,所以在之前需要做一个变换,这个变换就是归一化的逆过程:(3)建立merged_summary:以上,第一步完成 ~第二步: ...

2019-08-27 15:12:04 994

原创 神经网络实战记录9—将多分类InceptionNet改为多分类MobileNet

1.MobileNet的模型结构:(注意:在这节中BN这层先不加,后面的记录中会再加到)2.将Inception block换成mobile block:(1)因为是深度可分离卷积,所以称之为separable_cov_block:参数中的输出通道数目是经过深度可分离卷积之后再经过1*1的卷积后的通道数目:(2)去掉InceptionNet的实现:(3)实现深度可分离卷积:...

2019-08-25 14:52:56 448

原创 神经网络实战记录8—将多分类VGGNet改为多分类InceptionNet

1.回顾一些InceptionNet的基本思想:分组卷积:2.与残差网络类似,可以将分组卷积的Inception结构用一个函数封装起来,以后只需要调用这个函数即可:(1)将VGGNet的结构删掉:(2)实现Inception结构:定义一个inception block:再看各个分支是如何去计算的:首先定义一个scope防止运行冲突:定义分支的卷积:11的卷积:33和...

2019-08-25 14:13:34 453

原创 神经网络实战记录7—将多分类VGG模型改为多分类RestNet模型实现

1.RestNet网络结构就是先经过一个卷积层,再经过一个池化层,再经过若干个残差连接块,经过一个残差连接块之后可能会有一个降采样的操作(即maxpooling,其他降采样方式也有让步长等于2也能达到降采样的效果),在这个实战中是经过了4次降采样的过程,降采样的次数跟输入的大小正相关。2.明确残差连接的概念:输入分成两部分,第一部分是经过连接层去做一些事情,第二部分是直接传过来加到输出上面,这样...

2019-08-25 12:03:39 1374

原创 神经网络实战记录6—将多分类卷积神经网络改为多分类VGG模型实现

1.为了将VGG的思想引入进来,就需要在原本卷积神经网络卷积层的后面再添加新的卷积层:原:现:后面再接一个pooling层不变2. 剩下原来的卷积层做同样的处理:3. *注意:对应polling层的输入也需要改名4.训练效果:欧克~~...

2019-08-24 18:59:59 775

原创 神经网络实战记录5—将多层多分类神经网络改为多分类卷积神经网络

1.删掉三个隐含层:2.改用卷积神经网络来实现:(1)因为卷积神经网络输入是图片,所以要先将x这个展开的一维的向量一个具有三通道的图片格式:改成:reshape之后还需要交换一下通道,perm就是通道的排列顺序:这里的效果是把后两个挪到前面来, 前面的防盗后面去这样一个效果:(2)进行第一个卷积层和pooling层:激活函数是relu(第三个参数)pooiling的步长最...

2019-08-24 18:43:33 1466

原创 神经网络实战记录4—将单层多分类神经网络改成多层多分类神经网络

1.loss用交叉熵的损失函数2.用tensorflow自带的封装 简化代码:将改为:解释:dense函数就是在tensorflow中使用全连接的api,利用这个api可以构建更多的层次3.利用dense这个api可以构建更多的层次4.在中间需要加一个activation来构建一个非线性的变换函数:5.将增加的隐含层连接到y层中去:以上,就增加了3层隐含层~6.加了3层隐...

2019-08-24 17:26:30 705

原创 神经网络实战记录3—多分类回归单层神经网络模型实现

注:这里的代码的修改是和上一篇二分类逻辑斯蒂模型相比而言的一、数据处理:1.添加代码:all_data.append(data)all_labels.append(labels)2.去掉代码:3.在里清楚之前code的输出4.从第二个框code的运行结果可以看出这回train的数据集是50000个,test是10000个样本5. 改成输出10个类别(对比原二分类代码:)...

2019-08-24 16:56:27 761

原创 神经网络实战记录2—neuron2单个神经元在逻辑斯蒂回归模型上的实现

1.打开文件夹2.导入数据3.处理数据4.定义神经网络:yxwb激活函数loss准确率训练停止条件5.训练神经网络:定义:batch_sizetrain_stepstest_steps开始训练6.其他杂记:(1)出现这个错误是提醒要更新tensorflow的版本了,anaconda里base(root)—not installed-tensorlow-gpu...

2019-08-24 16:02:59 503

原创 神经网络实战记录2—neuron1

1.低级错误 换文件夹了要再zaicmd里重新开一遍tensorflow然后再打开jupyter notebook进行编译2.懒得写字了,都在备注里 .

2019-08-23 19:32:28 227

原创 神经网络实战记录1—data_introduction

今天开始记录学习的实战内容的一些东西,主要是为了防止自己以后会忘,看看。data set 用的是cifar10,不知道为啥waiwang没打开,从CSDN里下载的,凑伙用吧。1.修改Jupyter Notebook的默认打开目录https://blog.csdn.net/qq_24946843/article/details/879365082.cmd进入别的文件夹https://jin...

2019-08-23 16:23:29 227

原创 Springboot中yml和properties文件格式显示区别之一

原代码如下图,编译器不报错,但是浏览器内不显示girl的address:原因是properties格式的文件和yml格式的文件书写方式不一致,将girl在properties中按如下格式书写,再运行即可~以上~...

2018-09-19 12:50:35 970

转载 框架和设计模式的区别

框架、设计模式这两个概念总容易被混淆,其实它们之间还是有区别的。框架通常是代码重用,而设计模式是设计重用,架构则介于两者之间,部分代码重用,部分设计重用,有时分析也可重用。在软件生产中有三种级别的重用:内部重用,即在同一应用中能公共使用的抽象块;代码重用,即将通用模块组合成库或工具集,以便在多个应用和领域都能使用;应用框架的重用,即为专用领域提供通用的或现成的基础结构,以获得最高级别的重用性。框...

2018-09-18 21:01:39 127

原创 Duplicate entry '0' for key 'PRIMARY'解决办法

想增加一栏id并设为主键(以前的主键已删除)报错解决办法:把id字段设置为自增类型即可~以上~

2018-09-15 07:52:52 3619

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除