Food
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4364 Accepted Submission(s): 1475
Problem Description
You, a part-time dining service worker in your college’s dining hall, are now confused with a new problem: serve as many people as possible.
The issue comes up as people in your college are more and more difficult to serve with meal: They eat only some certain kinds of food and drink, and with requirement unsatisfied, go away directly.
You have prepared F (1 <= F <= 200) kinds of food and D (1 <= D <= 200) kinds of drink. Each kind of food or drink has certain amount, that is, how many people could this food or drink serve. Besides, You know there’re N (1 <= N <= 200) people and you too can tell people’s personal preference for food and drink.
Back to your goal: to serve as many people as possible. So you must decide a plan where some people are served while requirements of the rest of them are unmet. You should notice that, when one’s requirement is unmet, he/she would just go away, refusing any service.
The issue comes up as people in your college are more and more difficult to serve with meal: They eat only some certain kinds of food and drink, and with requirement unsatisfied, go away directly.
You have prepared F (1 <= F <= 200) kinds of food and D (1 <= D <= 200) kinds of drink. Each kind of food or drink has certain amount, that is, how many people could this food or drink serve. Besides, You know there’re N (1 <= N <= 200) people and you too can tell people’s personal preference for food and drink.
Back to your goal: to serve as many people as possible. So you must decide a plan where some people are served while requirements of the rest of them are unmet. You should notice that, when one’s requirement is unmet, he/she would just go away, refusing any service.
Input
There are several test cases.
For each test case, the first line contains three numbers: N,F,D, denoting the number of people, food, and drink.
The second line contains F integers, the ith number of which denotes amount of representative food.
The third line contains D integers, the ith number of which denotes amount of representative drink.
Following is N line, each consisting of a string of length F. e jth character in the ith one of these lines denotes whether people i would accept food j. “Y” for yes and “N” for no.
Following is N line, each consisting of a string of length D. e jth character in the ith one of these lines denotes whether people i would accept drink j. “Y” for yes and “N” for no.
Please process until EOF (End Of File).
For each test case, the first line contains three numbers: N,F,D, denoting the number of people, food, and drink.
The second line contains F integers, the ith number of which denotes amount of representative food.
The third line contains D integers, the ith number of which denotes amount of representative drink.
Following is N line, each consisting of a string of length F. e jth character in the ith one of these lines denotes whether people i would accept food j. “Y” for yes and “N” for no.
Following is N line, each consisting of a string of length D. e jth character in the ith one of these lines denotes whether people i would accept drink j. “Y” for yes and “N” for no.
Please process until EOF (End Of File).
Output
For each test case, please print a single line with one integer, the maximum number of people to be satisfied.
Sample Input
4 3 3 1 1 1 1 1 1 YYN NYY YNY YNY YNY YYN YYN NNY
Sample Output
3
题意:有N头牛,F种食物,D种饮料;
有2*N组输入,第一组1-N表示第i头牛对F种食物的喜欢与否,Y表示喜欢没N表示不喜欢,第二组1-N表示对饮料的喜欢与否;
问最多有几头牛可以吃上自己喜欢的食物,并喝上自己喜欢的饮料;
最大流算法, S——F(food)——N(n头牛)——N(n头牛)——D(饮料)——T;S表示超级源点,T表示超级汇点;
#include <iostream> #include <queue> #include <stdio.h> #include <string.h> #include <math.h> #include <vector> #include <stdlib.h> const int inf=0x3f3f3f3f; const int MAXN=1e5+10; const int MAXM=400010; using namespace std; struct Node { int to,next,cap; }edge[MAXM]; int tol;int head[MAXN]; int gap[MAXN],dis[MAXN],pre[MAXN],cur[MAXN]; void init() { tol=0; memset(head,-1,sizeof(head)); } void addedge(int u,int v,int w,int rw=0) { edge[tol].to=v;edge[tol].cap=w;edge[tol].next=head[u];head[u]=tol++; edge[tol].to=u;edge[tol].cap=rw;edge[tol].next=head[v];head[v]=tol++; } int sap(int start,int end0,int nodenum) { memset(dis,0,sizeof(dis)); memset(gap,0,sizeof(gap)); memcpy(cur,head,sizeof(head)); int u=pre[start]=start,maxflow=0,aug=-1; gap[0]=nodenum; while(dis[start]<nodenum) { loop: for(int &i=cur[u];i!=-1;i=edge[i].next) { int v=edge[i].to; if(edge[i].cap&&dis[u]==dis[v]+1) { if(aug==-1||aug>edge[i].cap) aug=edge[i].cap; pre[v]=u; u=v; if(v==end0) { maxflow+=aug; for(u=pre[u];v!=start;v=u,u=pre[u]) { edge[cur[u]].cap-=aug; edge[cur[u]^1].cap+=aug; } aug=-1; } goto loop; } } int mindis=nodenum; for(int i=head[u];i!=-1;i=edge[i].next) { int v=edge[i].to; if(edge[i].cap&&mindis>dis[v]) { cur[u]=i; mindis=dis[v]; } } if((--gap[dis[u]])==0)break; gap[dis[u]=mindis+1]++; u=pre[u]; } return maxflow; } int S,T; char str[555]; int N,F,D; int food[MAXN],dirk[MAXN]; int main() { while(scanf("%d%d%d",&N,&F,&D)!=-1) { S=0; T=F+D+N*2+1; init(); for(int i=1; i<=F; i++) { scanf("%d",&food[i]); // cin>>food[i]; addedge(S,i,food[i]); } for(int i=1; i<=D; i++) { scanf("%d",&dirk[i]); // cin>>dirk[i]; addedge(i+F+N*2,T,dirk[i]); } for(int i=1; i<=N; i++) addedge(i+F,i+N+F,1); for(int i=1; i<=N; i++) { scanf("%s",str); //cin>>str; int l=strlen(str); for(int j=0; j<l; j++) { if(str[j]=='Y') addedge(j+1,F+i,1); } } for(int i=1; i<=N; i++) { scanf("%s",str); //cin>>str; int l=strlen(str); for(int j=0; j<l; j++) { if(str[j]=='Y') addedge(F+N+i,F+N*2+j+1,1); } } printf("%d\n",sap(S,T,T+1)); //cout<<max_flow(0,hui)<<endl; } return 0; }