hdu4292网络流建图

题目大意: 有N个人, F种食物, D种饮料, 每种食物和饮料的数量有限且已经给出,每个人有自己喜欢的食物和饮料, 问,最多能满足多少人吃到自己喜欢的食物和饮料。

建图的想法: 食物饮料数量有限,又要最大满足人数,想到网络流,将食物放到一边, 饮料放到另一边, 人放到中间,因为每个人只能吃一种食物和饮料,所以把人拆成两个点,不然同一个人就可能同时吃很多食物和饮料。 然后左边建一个超级源,右边建一个超级汇,把线连起来。 根据测试样例做出的图如下:
这里写图片描述

建好图后就是裸的最大流了,dinic模板跑就好

/*
By : ZHangFY
*/
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int N = 1000;// 点数
const int inf = 0x3f3f3f;

struct Edge
{
    int from,to,cap,flow;
    Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f) {}
};

struct Dinic
{
    int n,m,s,t;//结点数,边数(包括反向弧),源点编号,汇点编号
    vector<Edge>edges;//边表,dges[e]和dges[e^1]互为反向弧
    vector<int>G[N];//邻接表,G[i][j]表示结点i的第j条边在e数组中的编号
    bool vis[N]; //BFS的使用
    int d[N]; //从起点到i的距离
    int cur[N]; //当前弧下标

    void addedge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        int  m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }

    bool bfs()
    {
        memset(vis,0,sizeof(vis));
        queue<int>Q;
        Q.push(s);
        d[s]=0;
        vis[s]=1;
        while(!Q.empty())
        {
            int x=Q.front();
            Q.pop();
            for(int i=0; i<G[x].size(); i++)
            {
                Edge&e=edges[G[x][i]];
                if(!vis[e.to]&&e.cap>e.flow)//只考虑残量网络中的弧
                {
                    vis[e.to]=1;
                    d[e.to]=d[x]+1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }

    int dfs(int x,int a)//x表示当前结点,a表示目前为止的最小残量
    {
        if(x==t||a==0)
            return a;//a等于0时及时退出,此时相当于断路了
        int flow=0,f;
        for(int i=cur[x]; i<G[x].size(); i++)//从上次考虑的弧开始,注意要使用引用,同时修改cur[x]
        {
            Edge&e=edges[G[x][i]];//e是一条边
            if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if(!a)
                    break;//a等于0及时退出,当a!=0,说明当前节点还存在另一个曾广路分支。
            }
        }
        return flow;
    }

    int Maxflow(int s,int t)//主过程
    {
        this->s=s,this->t=t;
        int flow=0;
        while(bfs())//不停地用bfs构造分层网络,然后用dfs沿着阻塞流增广
        {
            memset(cur,0,sizeof(cur));
            flow += dfs(s,inf);
        }
        return flow;
    }
};

int main()
{
    int N,F,D;
    while(~scanf("%d%d%d",&N,&F,&D))
    {
        Dinic tmp;
        int NV = 2*N+F+D+1, NE=0;
        int t;
        char op[205];
        for(int i=1; i<=F; i++)  //从超级源到食物的线
        {
            scanf("%d",&t);
            tmp.addedge(0,i,t);
        }
        for(int i=1; i<=D; i++)  //从超级汇到饮料的线
        {
            scanf("%d",&t);
            tmp.addedge(i+F,NV,t);
        }
        for(int i=1; i<=N; i++)  //食物到人的线
        {
            scanf("%s",op);
            for(int j=1; j<=F; j++)
                if(op[j-1] == 'Y')
                    tmp.addedge(j,i*2-1+D+F,1);
        }
        for(int i=1;i<=N;i++)   //左边人到右边人的线
            tmp.addedge(i*2-1+D+F,i*2+D+F,1);

        for(int i=1;i<=N;i++) //饮料到人的线
        {
            scanf("%s",op);
            for(int j=1;j<=D;j++)
                if(op[j-1] == 'Y')
                    tmp.addedge(i*2+D+F,j+F,1);
        }
        printf("%d\n",tmp.Maxflow(NE,NV));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值